And More
Recursion

Computer Science Department
. University of Central Florida

COP 3502 — Computer Science |

Binary Search — A reminder

Array Search
We are given the following sorted array:
index |0 1 2 3 4 5 6 7 8
value |2 6 19 27 33 37 38 41 118

We are searching for the value, 19 (for example)

Remember, we said that you search the middle

element
If found, you are done

If the element in the middle is greater than 19
Search to the LEFT (cuz 19 MUST be to the left)

If the element in the middle is less than 19

Search to the RIGHT (cuz 19 MUST then be to the right)

© Jonathan Cazalas

And More Recursion

page 2

Binary Search — A reminder

Array Search
We are given the following sorted array:
index |0 1 2 3 4 5 6 7 8
value |2 6 19 27 33 37 38 41 118

We are searching for the value, 19

So, we MUST start the search in the middle
INDEX of the array.
In this case:

The lowest index is O

The highest index is 8

So the middle index is 4

© Jonathan Cazalas And More Recursion

page 3

Binary Search

Array Search

Correct Strategy

We would ask, “is the number | am searching for, 19,
greater or less than the number stored in index 47
Index 4 stores 33

The answer would be “less than”

So we would modify our search range to in between
iIndex 0 and index 3

Note that index 4 is no longer in the search space
We then continue this process

The second index we’d look at is index 1, since (0+3)/2=1
Then we’d finally get to index 2, since (2+3)/2 = 2
And at index 2, we would find the value, 19, in the array

© Jonathan Cazalas And More Recursion page 4

Binary Search

Binary Search code:

iInt binsearch(int a[], int len, 1Int value) {

int low = 0, high = len-1;
while (low <= high) {
int mid = (low+high)/2;
1T (value < a[mid])
high = mid-1;
else 1Tt (value > a[mid])
low = mid+1;
— else
return 1;

}

return O;

}

© Jonathan Cazalas And More Recursion

page 5

Binary Search

Binary Search code:

At the end of each array iteration, all we do is
update either low or high

This modifies our search region
Essentially halving it

As we saw previously, this runs in log n time

But this iterative code isn’'t the easiest to read

We now look at the recursive code
MUCH easier to read and understand

© Jonathan Cazalas And More Recursion page 6

Binary Search — Recursive

Binary Search using recursion:

We need a stopping case:
We need to STOP the recursion at some point

So when do we stop:
When the number is found!

Or when the search range is nothing
o huh?
The search range is empty when (low > high)

So how let us look at the code...

© Jonathan Cazalas And More Recursion page 7

SV

Binary Search — Recursive

Binary Search Code (using recursion):

We see how this code follows from the
explanation of binary search quite easily

int binSearch(int *values, int low, int high, int searchval)
int mid;
iIT (low <= high) {
mid = (low+high)/2;
iIT (searchval < values[mid])
return binSearch(values, low, mid-1, searchval);
else 1T (searchval > values[mid])
return binSearch(values, mid+1, high, searchval);
else
return 1;

}

return O;

}

© Jonathan Cazalas And More Recursion

Binary Search — Recursive

Binary Search Code (using recursion):

So if the value is found
We return 1

Otherwise,
iIT (searchval < values|[mid])
Then recursively call binSearch to the LEFT
else 1f (searchval > values[mid])
Then recursively call binSearch to the RIGHT

If low ever becomes greater than high
This means that searchval is NOT in the array

© Jonathan Cazalas And More Recursion page 9

Y
Brief Interlude: Human Stupidity

© Jonathan Cazalas And More Recursion page 10

Recursive Exponentiation

Example from Previous lecture

Our function:

Calculates b€
Some base raised to a power, e
The input is the base, b, and the exponent, e
So if the input was 2 for the base and 4 for the exponent
The answer would be 24 = 16

How do we do this recursively?

We need to solve this in such a way that part of the
solution is a sub-problem of the EXACT same nature of
the original problem.

© Jonathan Cazalas And More Recursion page 11

Recursive Exponentiation

Example from Previous lecture

Our function:

Using b and e as input, here is our function
f(b,e) = b

So to make this recursive, can we say:.
f(b,e) = b® = b*b-D)

Does that “look” recursive?

YES it does!

Why?

Cuz the right side is indeed a sub-problem of the original

We want to evaluate b®

And our right side evaluates b1

© Jonathan Cazalas And More Recursion page 12

Recursive Exponentiation

Example from Previous lecture

Our function:
f(b,e) = b*b(e-D
So we need to determine the terminating condition!
We know that f(b,0) = b® =1
So our terminating condition can be whene =1

Additionally, our recursive calls need to return an
expression for f(b,e) in terms of f(b,k)
forsome k< e

We just found that f(b,e) = b*b®-1)
So now we can write our actual function...

© Jonathan Cazalas And More Recursion page 13

=7

Recursive Exponentiation

Example from Previous lecture
Code:

// Pre-conditions: e 1s greater than or equal to O.
// Post-conditions: returns be.
int Power(int base, Int exponent) {

iIT (exponent == 0)
return 1;
. else

return (base*Power(base, exponent-1));

© Jonathan Cazalas And More Recursion page 14

Recursive Exponentiation

Example from Previous lecture

Say we Initially call the function with 2 as our base
and 8 as the exponent

The final return will be

return 2*2*2*2%2*2* %2

Which equals 256
You notice we have 7 multiplications (exp was 8)
- The number of multiplications needed is one less
than the exponent value

So If n was the exponent
The # of multiplications needed would be n-1

© Jonathan Cazalas And More Recursion page 15

Fast Exponentiation

Example from Previous lecture
This works just fine
BUT, it becomes VERY slow for large exponents

If the exponent was 10,000, that would be 9,999 mults!
How can we do better?

One key idea:

Remembering the laws of exponents
Yeah, algebra...the thing you forgot about two years ago

So using the laws of exponents
We remember that 28 = 24*24

© Jonathan Cazalas And More Recursion page 16

Fast Exponentiation

Example from Previous lecture
One key idea:

Remembering the laws of exponents
28 — 24*24
Now, if we know 24
we can calculate 28 with one multiplication
What is 24?
24 = 22%D2
and 22 = 2*(2)
So... 2*(2) =4, 4*(4) = 16, 16*(16) = 256 = 28
So we've calculated 28 using only three multiplications
MUCH better than 7 multiplications

© Jonathan Cazalas And More Recursion page 17

Fast Exponentiation

Example of Fast Exponentiation

So, in general, we can say:

bn = anZ*bn/Z

So to find b", we find b"?2
HALF of the original amount

And to find b"2, we find b"4
Again, HALF of b2

This smells like a 1og n running time
log n number of multiplications
Much better than n multiplications

But as of now, this only works if n Is even

© Jonathan Cazalas And More Recursion

page 18

Fast Exponentiation

Example of Fast Exponentiation
So, in general, we can say:
b = anZ*bnlz
This works when n is even
But what if n is odd?
Notice that 2° = 24*24*2
So, in general, we can say:

a =

~lav*(@"?%) if n is even
a"*(a"?)(a) ifnisodd

© Jonathan Cazalas And More Recursion page 19

Fast Exponentiation

Example of Fast Exponentiation

Also, this method relies on “integer division”
We've briefly discussed this
Basically if n is 9, then n/2 =4

Integer division
Think of it as dividing
AND then rounding down, if needed, to the nearest integer

Soifnis 121, then n/2 = 60
— Finally, if nis 57, then n/2 = 28

Using the same base case as the previous
power function, here is the code...

© Jonathan Cazalas And More Recursion

page 20

=7

Fast Exponentiation

Example of Fast Exponentiation
Code:

Int powerB(int base, Int exp) {
iIT (exp == 0)
return 1;
else 1f (exp == 1)
return base;

else 1T (exp%2 == 0)
return powerB(base*base, exp/2);

else
return base*powerB(base, exp-1);

© Jonathan Cazalas And More Recursion page 21

Recursion

WASN'T
THAT

BODACIOUS!

S

Daily Demotivator

e -

ACHIEVEMENTT
A A j '
You Can DO ANYTHING YOU SET YOUR MIND TO WHEN You HAaVE VISION,
DETERMINATION, AND AM EMDLESS SUPPLY OF EXPEMDABLE LABCR.

© Jonathan Cazalas And More Recursion page 23

And More
Recursion

Computer Science Department
. University of Central Florida

COP 3502 — Computer Science |

	And More Recursion
	Binary Search – A reminder
	Binary Search – A reminder
	Binary Search
	Binary Search
	Binary Search
	Binary Search – Recursive
	Binary Search – Recursive
	Binary Search – Recursive
	Brief Interlude: Human Stupidity
	Recursive Exponentiation
	Recursive Exponentiation
	Recursive Exponentiation
	Recursive Exponentiation
	Recursive Exponentiation
	Fast Exponentiation
	Fast Exponentiation
	Fast Exponentiation
	Fast Exponentiation
	Fast Exponentiation
	Fast Exponentiation
	Recursion
	Daily Demotivator
	And More Recursion

