
Computer Science Department
University of Central Florida

And More
Recursion

COP 3502 – Computer Science I

And More Recursion page 2© Jonathan Cazalas

Binary Search – A reminder

 Array Search
 We are given the following sorted array:

 We are searching for the value, 19 (for example)
 Remember, we said that you search the middle

element
 If found, you are done
 If the element in the middle is greater than 19

 Search to the LEFT (cuz 19 MUST be to the left)

 If the element in the middle is less than 19
 Search to the RIGHT (cuz 19 MUST then be to the right)

index 0 1 2 3 4 5 6 7 8
value 2 6 19 27 33 37 38 41 118

And More Recursion page 3© Jonathan Cazalas

Binary Search – A reminder

 Array Search
 We are given the following sorted array:

 We are searching for the value, 19
 So, we MUST start the search in the middle

INDEX of the array.
 In this case:

 The lowest index is 0
 The highest index is 8
 So the middle index is 4

index 0 1 2 3 4 5 6 7 8
value 2 6 19 27 33 37 38 41 118

And More Recursion page 4© Jonathan Cazalas

Binary Search

 Array Search
 Correct Strategy

 We would ask, “is the number I am searching for, 19,
greater or less than the number stored in index 4?
 Index 4 stores 33

 The answer would be “less than”
 So we would modify our search range to in between

index 0 and index 3
 Note that index 4 is no longer in the search space

 We then continue this process
 The second index we’d look at is index 1, since (0+3)/2=1
 Then we’d finally get to index 2, since (2+3)/2 = 2
 And at index 2, we would find the value, 19, in the array

And More Recursion page 5© Jonathan Cazalas

Binary Search

 Binary Search code:
int binsearch(int a[], int len, int value) {

int low = 0, high = len-1;
while (low <= high) {

int mid = (low+high)/2;
if (value < a[mid])

high = mid-1;
else if (value > a[mid])

low = mid+1;
else

return 1;
}

return 0;
}

And More Recursion page 6© Jonathan Cazalas

Binary Search

 Binary Search code:
 At the end of each array iteration, all we do is

update either low or high
 This modifies our search region

 Essentially halving it

 As we saw previously, this runs in log n time

 But this iterative code isn’t the easiest to read
 We now look at the recursive code

 MUCH easier to read and understand

And More Recursion page 7© Jonathan Cazalas

Binary Search – Recursive

 Binary Search using recursion:
 We need a stopping case:

 We need to STOP the recursion at some point

 So when do we stop:
1) When the number is found!
2) Or when the search range is nothing

 huh?
 The search range is empty when (low > high)

 So how let us look at the code…

And More Recursion page 8© Jonathan Cazalas

Binary Search – Recursive

 Binary Search Code (using recursion):
 We see how this code follows from the

explanation of binary search quite easily

int binSearch(int *values, int low, int high, int searchval)
int mid;
if (low <= high) {

mid = (low+high)/2;
if (searchval < values[mid])

return binSearch(values, low, mid-1, searchval);
else if (searchval > values[mid])

return binSearch(values, mid+1, high, searchval);
else

return 1;
}
return 0;

}

And More Recursion page 9© Jonathan Cazalas

Binary Search – Recursive

 Binary Search Code (using recursion):
 So if the value is found

 We return 1

 Otherwise,
 if (searchval < values[mid])

 Then recursively call binSearch to the LEFT
 else if (searchval > values[mid])

 Then recursively call binSearch to the RIGHT

 If low ever becomes greater than high
 This means that searchval is NOT in the array

And More Recursion page 10© Jonathan Cazalas

Brief Interlude: Human Stupidity

And More Recursion page 11© Jonathan Cazalas

Recursive Exponentiation

 Example from Previous lecture
 Our function:

 Calculates be

 Some base raised to a power, e
 The input is the base, b, and the exponent, e
 So if the input was 2 for the base and 4 for the exponent

 The answer would be 24 = 16

 How do we do this recursively?
 We need to solve this in such a way that part of the

solution is a sub-problem of the EXACT same nature of
the original problem.

And More Recursion page 12© Jonathan Cazalas

Recursive Exponentiation

 Example from Previous lecture
 Our function:

 Using b and e as input, here is our function
 f(b,e) = be

 So to make this recursive, can we say:
 f(b,e) = be = b*b(e-1)

 Does that “look” recursive?
 YES it does!
 Why?
 Cuz the right side is indeed a sub-problem of the original
 We want to evaluate be

 And our right side evaluates b(e-1)

And More Recursion page 13© Jonathan Cazalas

Recursive Exponentiation

 Example from Previous lecture
 Our function:

 f(b,e) = b*b(e-1)

 So we need to determine the terminating condition!
 We know that f(b,0) = b0 = 1

 So our terminating condition can be when e = 1
 Additionally, our recursive calls need to return an

expression for f(b,e) in terms of f(b,k)
 for some k < e

 We just found that f(b,e) = b*b(e-1)

 So now we can write our actual function…

And More Recursion page 14© Jonathan Cazalas

Recursive Exponentiation

 Example from Previous lecture
 Code:

// Pre-conditions: e is greater than or equal to 0.
// Post-conditions: returns be.
int Power(int base, int exponent) {

if (exponent == 0)
return 1;

else
return (base*Power(base, exponent-1));

}

And More Recursion page 15© Jonathan Cazalas

Recursive Exponentiation

 Example from Previous lecture
 Say we initially call the function with 2 as our base

and 8 as the exponent
 The final return will be

 return 2*2*2*2*2*2*2*2
 Which equals 256

 You notice we have 7 multiplications (exp was 8)
 The number of multiplications needed is one less

than the exponent value
 So if n was the exponent

 The # of multiplications needed would be n-1

And More Recursion page 16© Jonathan Cazalas

Fast Exponentiation

 Example from Previous lecture
 This works just fine
 BUT, it becomes VERY slow for large exponents

 If the exponent was 10,000, that would be 9,999 mults!

 How can we do better?

 One key idea:
 Remembering the laws of exponents

 Yeah, algebra…the thing you forgot about two years ago
 So using the laws of exponents

 We remember that 28 = 24*24

And More Recursion page 17© Jonathan Cazalas

Fast Exponentiation

 Example from Previous lecture
 One key idea:

 Remembering the laws of exponents
 28 = 24*24

 Now, if we know 24

 we can calculate 28 with one multiplication
 What is 24?

 24 = 22*22

 and 22 = 2*(2)
 So… 2*(2) = 4, 4*(4) = 16, 16*(16) = 256 = 28

 So we’ve calculated 28 using only three multiplications
 MUCH better than 7 multiplications

And More Recursion page 18© Jonathan Cazalas

Fast Exponentiation

 Example of Fast Exponentiation
 So, in general, we can say:
 bn = bn/2*bn/2

 So to find bn, we find bn/2

 HALF of the original amount

 And to find bn/2, we find bn/4

 Again, HALF of bn/2

 This smells like a log n running time
 log n number of multiplications
 Much better than n multiplications

 But as of now, this only works if n is even

And More Recursion page 19© Jonathan Cazalas

Fast Exponentiation

 Example of Fast Exponentiation
 So, in general, we can say:
 bn = bn/2*bn/2

 This works when n is even
 But what if n is odd?
 Notice that 29 = 24*24*2
 So, in general, we can say:

/ 2 / 2

/ 2 / 2

() if n is even
()() if n is odd

n n
n

n n

a a
a

a a a


= 


And More Recursion page 20© Jonathan Cazalas

Fast Exponentiation

 Example of Fast Exponentiation
 Also, this method relies on “integer division”

 We’ve briefly discussed this
 Basically if n is 9, then n/2 = 4

 Integer division
 Think of it as dividing
 AND then rounding down, if needed, to the nearest integer

 So if n is 121, then n/2 = 60
 Finally, if n is 57, then n/2 = 28

 Using the same base case as the previous
power function, here is the code…

And More Recursion page 21© Jonathan Cazalas

Fast Exponentiation

 Example of Fast Exponentiation
 Code:

int powerB(int base, int exp) {
if (exp == 0)

return 1;
else if (exp == 1)

return base;
else if (exp%2 == 0)

return powerB(base*base, exp/2);
else

return base*powerB(base, exp-1);
}

And More Recursion page 22© Jonathan Cazalas

Recursion

WASN’T
THAT

BODACIOUS!

And More Recursion page 23© Jonathan Cazalas

Daily Demotivator

Computer Science Department
University of Central Florida

And More
Recursion

COP 3502 – Computer Science I

	And More Recursion
	Binary Search – A reminder
	Binary Search – A reminder
	Binary Search
	Binary Search
	Binary Search
	Binary Search – Recursive
	Binary Search – Recursive
	Binary Search – Recursive
	Brief Interlude: Human Stupidity
	Recursive Exponentiation
	Recursive Exponentiation
	Recursive Exponentiation
	Recursive Exponentiation
	Recursive Exponentiation
	Fast Exponentiation
	Fast Exponentiation
	Fast Exponentiation
	Fast Exponentiation
	Fast Exponentiation
	Fast Exponentiation
	Recursion
	Daily Demotivator
	And More Recursion

