
Computer Science Department
University of Central Florida

More Recursion:
Permutations

COP 3502 – Computer Science I

More Recursion: Permutations page 2© Jonathan Cazalas

Announcements

 Questions on the Grading of your Programs:
 Most likely the grade given is indeed accurate
 But students respond:

 “It worked on MY computer with MY sample input”

 We respond:
 Check the grading input file used and respective output file,

both of which are available on the course website
 And check the solution!
 Do this BEFORE asking “why this” or “why that”

 However, TAs can and will make mistakes:
 What to do when a grading mistake was made?
 http://www.cs.ucf.edu/courses/cop3502/spr2012/misc/programgrades.php

http://www.cs.ucf.edu/courses/cop3502/spr2012/misc/programgrades.php�

More Recursion: Permutations page 3© Jonathan Cazalas

Announcements

 Cheating on Programs
 Program 1

 Very basic program
 Honestly, hard to detect cheating

 Program 2 (and remaining programs)
 VERY EASY to detect cheating

 For reasons I won’t go into (don’t want to help you cheat!)

 Note: it may be the case that you did NOT copy code from
another student in the class

 BUT, you could still be flagged for cheating
 How? Because both of you may have taken (pulled) from

code found online

More Recursion: Permutations page 4© Jonathan Cazalas

Permutations

 The Permutation problem:
 Given a list of items:

 List ALL the possible orderings of those items
 Often, we work with permutations of letters

 For example:
 Here are all the permutations of the letters CAT:

 The question: can we write a program to do this?

CAT
CTA
ACT

ATC
TAC
TCA

More Recursion: Permutations page 5© Jonathan Cazalas

Permutations

 The Permutation algorithm:
 There are several different permutation

algorithms
 Since recursion is an emphasis of the course,

 we will present a recursive algorithm to solve this

 Permutations of the letters CAT:

CAT
CTA
ACT

ATC
TAC
TCA

More Recursion: Permutations page 6© Jonathan Cazalas

Permutations

 The Permutation algorithm:
 The idea is as follows:

 We want to list ALL the permutations of CAT
 So we split our work into 3 groups of permutations:

1) Permutations that start with C
2) Permutations that start with A
3) Permutations that start with T

More Recursion: Permutations page 7© Jonathan Cazalas

Permutations

 The Permutation algorithm:
 The idea is as follows:

 Notice what happens:
 What can we say about ALL of the permutations that

start with the letter C?
 Think about recursion…
 Think about the idea of wanting to reduce your problem to a

smaller problem of the same form…

 ALL of the permutations that start with the letter C,
 Are SIMPLY three-character strings that are formed by

attaching C to the front of ALL permutations of “AT”

 So this is nothing but another, smaller permutation
problem of the same form!!!

More Recursion: Permutations page 8© Jonathan Cazalas

Permutations – Recursive Calls

 The Permutation algorithm:
 The # of recursive calls needed:
 General “rule of thumb” for recursion:

 “recursive functions don’t have loops”
 cuz we use recursion!
 Either you have iteration, hence loops
 Or recursion…no need for loops

 However, this rule of thumb is just that
 It’s not always true
 One exception is this permutation algorithm

More Recursion: Permutations page 9© Jonathan Cazalas

Permutations – Recursive Calls

 The Permutation algorithm:
 The # of recursive calls needed:
 Look at the example with three letters, CAT

 We need THREE recursive calls, one for each letter
 Remember, we said we split the work into three groups:
1) Permutations that start with C
2) Permutations that start with A
3) Permutations that start with T

 But what if we were permuting the letters of the
word “computer”
 EIGHT recursive calls would be needed
 1 for each possible starting letter

More Recursion: Permutations page 10© Jonathan Cazalas

Permutations – Recursive Calls

 The Permutation algorithm:
 The # of recursive calls needed:
 So we see the need for a loop in our algorithm:

 Now, what is the terminating condition?

for (each possible starting letter) {
list all permutations that start
with that letter

}

More Recursion: Permutations page 11© Jonathan Cazalas

Permutations – Recursive Calls

 The Permutation algorithm:
 The # of recursive calls needed:
 Terminating condition:

 Permuting either 0 or 1 element
 Right.?.

 Cause if there is only 1 element or 0 elements, then there is
nothing to permute!

 In our code, we will use 0 as the terminating condition
 When there are 0 elements left
 This can only be done in one way

More Recursion: Permutations page 12© Jonathan Cazalas

Permutations – Extra Parameter

 The Permutation algorithm:
 Use of an extra parameter:

 As seen previously, some recursive functions take in an
extra parameter
 When compared to their iterative counterparts
 Usually for the purpose of reducing towards the terminating,

or base, case
 This is the case for our permutation algorithm

 In order for the recursive permutation to work correctly
 We must specify one additional piece of information

 And now to our function…

More Recursion: Permutations page 13© Jonathan Cazalas

Permutations – Recursive Function

 The Permutation algorithm:
 Function Prototype

 With Pre-conditions and Post-conditions:

 So k refers to the first k characters that are fixed in
their original positions

// Pre-condition: str is a valid C String, and
// k is non-negative and less than
// or equal to the length of str.
// Post-condition: All of the permutations of str
// with the first k characters fixed
// in their original positions are
// printed. Namely, if n is the
// length of str, then (n-k)!
// permutations are printed.
void RecursivePermute(char str[], int k);

More Recursion: Permutations page 14© Jonathan Cazalas

Permutations – Recursive Function

 The Permutation algorithm:
 Terminating condition:

 Terminate when k is equal to the length of the string, str
 Think about that:
 k refers to the first k characters in the string that are fixed
 So if k is equal to the length of the actual string
 This means that ALL of the letters in str are fixed!
 If/when this becomes the case

 We simply want to print out that permutation

 If we do NOT terminate:
 We want a for loop that tries each character at index k

More Recursion: Permutations page 15© Jonathan Cazalas

Permutations – Recursive Function

 The Permutation algorithm:
 The main for loop within the recursive algorithm:

 But how do we get different characters (the ‘C’,
the ‘A’, and the ‘T’) at the first position???
 C is the first character in the word CAT
 So how do we make ‘A’ become the first character

for (j=k; j<strlen(str); j++) {
ExchangeCharacters(str, k, j);
RecursivePermute(str, k+1);
ExchangeCharacters(str, j, k);

}

More Recursion: Permutations page 16© Jonathan Cazalas

Permutations – Recursive Function

 The Permutation algorithm:
 The main for loop within the recursive algorithm:

 ExchangeCharacters function:
 This function will take in our string (str) and it will

SWAP two characters within that string.
 Which two characters:

 The character at index k will SWAP with the one at index j

for (j=k; j<strlen(str); j++) {
ExchangeCharacters(str, k, j);
RecursivePermute(str, k+1);
ExchangeCharacters(str, j, k);

}

More Recursion: Permutations page 17© Jonathan Cazalas

Permutations – Recursive Function

 The Permutation algorithm:
 Let’s take a closer look at this specific function:

 So we send over a string and then SWAP the
characters at the two specified indices

// Pre-condition: str is a valid C String and i and j are
// valid indexes to that string.
// Post-condition: The characters at index i and j will
// be swapped in str.
void ExchangeCharacters(char str[], int i, int j) {

char temp = str[i];
str[i] = str[j];
str[j] = temp;

}

More Recursion: Permutations page 18© Jonathan Cazalas

Permutations – Recursive Function

 The Permutation algorithm:
 Again, the main loop within the recursive algorithm:

 ExchangeCharacters function:
 Remember the three letter example, CAT
 We said that we need to find ALL permutations with C as

the first character, A as the first, and with T as the first

for (j=k; j<strlen(str); j++) {
ExchangeCharacters(str, k, j);
RecursivePermute(str, k+1);
ExchangeCharacters(str, j, k);

}

More Recursion: Permutations page 19© Jonathan Cazalas

Permutations – Recursive Function

 The Permutation algorithm:
 Again, the main loop within the recursive algorithm:

 ExchangeCharacters function:
 This function SWAPS the two characters at the indices

passed in as the last two arguments to the function
 We then recursively call the permute function
 Then we SWAP the characters back to their spots

for (j=k; j<strlen(str); j++) {
ExchangeCharacters(str, k, j);
RecursivePermute(str, k+1);
ExchangeCharacters(str, j, k);

}

More Recursion: Permutations page 20© Jonathan Cazalas

Brief Interlude: Human Stupidity

More Recursion: Permutations page 21© Jonathan Cazalas

Permutations – Recursive Function
void RecursivePermute(char str[], int k) {

int j;

// Base-case: All fixed, so print str.
if (k == strlen(str))

printf("%s\n", str);
else {

// Try each letter in spot j.
for (j=k; j<strlen(str); j++) {

// Place next letter in spot k.
ExchangeCharacters(str, k, j);

// Print all with spot k fixed.
RecursivePermute(str, k+1);

// Put the old char back.
ExchangeCharacters(str, j, k);

}
}

} Let’s look at this in more detail.

More Recursion: Permutations page 22© Jonathan Cazalas

Permutations – Recursive Function

 The Permutation algorithm:
 Code in detail:

 We send over two parameters to the function:
1) The actual string we want to permute
2) And the integer k

 Represents the first k characters that are FIXED at their spots

void RecursivePermute(char str[], int k) {
int j;

// Base-case: All fixed, so print str.
if (k == strlen(str))

printf("%s\n", str);

More Recursion: Permutations page 23© Jonathan Cazalas

Permutations – Recursive Function

 The Permutation algorithm:
 Code in detail:

 Using CAT as our example string:
1) We send over the string, CAT
2) And the integer k (currently set to zero)

 Representing that ZERO characters are initially FIXED.

void RecursivePermute(char str[], int k) {
int j;

// Base-case: All fixed, so print str.
if (k == strlen(str))

printf("%s\n", str);

More Recursion: Permutations page 24© Jonathan Cazalas

Permutations – Recursive Function

 The Permutation algorithm:
 Code in detail:

 Base case:
 If k is equal to the length of our string

 Meaning that ALL characters are fixed
 Then there is no more characters to permute
 Just print out the resulting string!

void RecursivePermute(char str[], int k) {
int j;

// Base-case: All fixed, so print str.
if (k == strlen(str))

printf("%s\n", str);

More Recursion: Permutations page 25© Jonathan Cazalas

Permutations – Recursive Function

 The Permutation algorithm:
 Code in detail:

 ALL other cases (non-base cases):
 If k does NOT equal the length of the string
 Means there are some characters that have not been FIXED
 Means that there are more options to permute
 We have to try those unused characters at index k

void RecursivePermute(char str[], int k) {
// PREVIOUS CODE
else {

// Try each letter in spot j.
for (j=k; j<strlen(str); j++) {

//
// ... code here
//

More Recursion: Permutations page 26© Jonathan Cazalas

Permutations – Recursive Function

 The Permutation algorithm:
 Code in detail:

 ALL other cases (non-base cases):
 So we call this for loop
 It iterates the number of times EQUAL to the number of

possible characters that can go into index k

for (j=k; j<strlen(str); j++) {
// Place next letter in spot k.
ExchangeCharacters(str, k, j);
// Print all perms. with spot k fixed.
RecursivePermute(str, k+1);
// Put the old char back.
ExchangeCharacters(str, j, k);

}

More Recursion: Permutations page 27© Jonathan Cazalas

Permutations – Recursive Function

 The Permutation algorithm:
 Code in detail:

 ALL other cases (non-base cases):
 Again, k refers to the number of FIXED positions
 For example, if k is 2

 Meaning, index 0 and index 1 are FIXED
 Then the first NON-FIXED location is index 2

for (j=k; j<strlen(str); j++) {
// Place next letter in spot k.
ExchangeCharacters(str, k, j);
// Print all perms. with spot k fixed.
RecursivePermute(str, k+1);
// Put the old char back.
ExchangeCharacters(str, j, k);

}

…the value of k!

More Recursion: Permutations page 28© Jonathan Cazalas

Permutations – Recursive Function

 The Permutation algorithm:
 Code in detail:

 For all possible characters that could be placed at index k
(the next possible NON-FIXED spot):
 ExchangeCharacters(str, k, j)

 Means SWAP the characters at index k and j
 Meaning, try all possible (remaining) values at index k
for (j=k; j<strlen(str); j++) {

// Place next letter in spot k.
ExchangeCharacters(str, k, j);
// Print all with spot k fixed.
RecursivePermute(str, k+1);
// Put the old char back.
ExchangeCharacters(str, j, k);

}

More Recursion: Permutations page 29© Jonathan Cazalas

Permutations – Recursive Function

 The Permutation algorithm:
 Code in detail:

 For all possible characters at index k:
 So if we had just started this function

 Input was CAT for the string and k equal to zero
 this for loop would run three times (length of CAT)

 Each time, the first line would try each character at index 0

for (j=k; j<strlen(str); j++) {
// Place next letter in spot k.
ExchangeCharacters(str, k, j);
// Print all with spot k fixed.
RecursivePermute(str, k+1);
// Put the old char back.
ExchangeCharacters(str, j, k);

}

More Recursion: Permutations page 30© Jonathan Cazalas

Permutations – Recursive Function

 The Permutation algorithm:
 Code in detail:

 For all possible characters at index k:
 This is what we said earlier, split the work into 3 parts:

 Permutations that start with C
 Permutations that start with A
 Permutations that start with T

for (j=k; j<strlen(str); j++) {
// Place next letter in spot k.
ExchangeCharacters(str, k, j);
// Print all with spot k fixed.
RecursivePermute(str, k+1);
// Put the old char back.
ExchangeCharacters(str, j, k);

}

More Recursion: Permutations page 31© Jonathan Cazalas

Permutations – Recursive Function

 The Permutation algorithm:
 Code in detail:

 So the for loop iterates three times (for CAT)
 First line of code makes each letter the first spot of the string
 The second line then recursively calls the function

 The arguments are the string (updated with a new, 1st character)
 And the new value for k (referring to the # of FIXED spots)

for (j=k; j<strlen(str); j++) {
// Place next letter in spot k.
ExchangeCharacters(str, k, j);
// Print all with spot k fixed.
RecursivePermute(str, k+1);
// Put the old char back.
ExchangeCharacters(str, j, k);

}

More Recursion: Permutations page 32© Jonathan Cazalas

Permutations – Recursive Function

 The Permutation algorithm:
 Code in detail:

 So the for loop iterates three times (for CAT)
 Third and final line of code
 Simply switches back the characters that we swapped with the

first line of code (of the for loop)

for (j=k; j<strlen(str); j++) {
// Place next letter in spot k.
ExchangeCharacters(str, k, j);
// Print all with spot k fixed.
RecursivePermute(str, k+1);
// Put the old char back.
ExchangeCharacters(str, j, k);

}

More Recursion: Permutations page 33© Jonathan Cazalas

Recursion

WASN’T
THAT

BODACIOUS!

More Recursion: Permutations page 34© Jonathan Cazalas

Daily Demotivator

Computer Science Department
University of Central Florida

More Recursion:
Permutations

COP 3502 – Computer Science I

	More Recursion:�Permutations
	Announcements
	Announcements
	Permutations
	Permutations
	Permutations
	Permutations
	Permutations – Recursive Calls
	Permutations – Recursive Calls
	Permutations – Recursive Calls
	Permutations – Recursive Calls
	Permutations – Extra Parameter
	Permutations – Recursive Function
	Permutations – Recursive Function
	Permutations – Recursive Function
	Permutations – Recursive Function
	Permutations – Recursive Function
	Permutations – Recursive Function
	Permutations – Recursive Function
	Brief Interlude: Human Stupidity
	Permutations – Recursive Function
	Permutations – Recursive Function
	Permutations – Recursive Function
	Permutations – Recursive Function
	Permutations – Recursive Function
	Permutations – Recursive Function
	Permutations – Recursive Function
	Permutations – Recursive Function
	Permutations – Recursive Function
	Permutations – Recursive Function
	Permutations – Recursive Function
	Permutations – Recursive Function
	Recursion
	Daily Demotivator
	More Recursion:�Permutations

