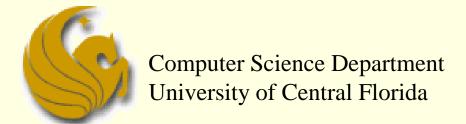
More Recursion



COP 3502 - Computer Science I

Recursion

- What is Recursion? (reminder from last time)
 - From the programming perspective:
 - Recursion solves large problems by reducing them to smaller problems of the <u>same form</u>
 - Recursion is a function that invokes itself
 - Basically <u>splits</u> a problem into <u>one or more SIMPLER</u> <u>versions of itself</u>
 - And we must have a way of stopping the recursion
 - So the function must have some sort of calls or conditional statements that can actually terminate the function

- Example: Compute Factorial of a Number
 - What is a factorial?
 - 4! = 4 * 3 * 2 * 1 = 24
 - In general, we can say:
 - n! = n * (n-1) * (n-2) * ... * 2 * 1
 - Also, 0! = 1
 - (just accept it!)

- Example: Compute Factorial of a Number
 - Recursive Solution
 - Mathematically, factorial is already defined recursively
 - Note that each factorial is related to a factorial of the next smaller integer

$$\bullet$$
 4! = 4*3*2*1 = 4 * (4-1)! = 4 * (3!)

- Right?
- Another example:

$$\bullet$$
 10! = 10*(9!)

This is clear right? Since 9! clearly is equal to 9*8*7*6*5*4*3*2*1

- Example: Compute Factorial of a Number
 - Recursive Solution
 - Mathematically, factorial is already defined recursively
 - Note that each factorial is related to a factorial of the next smaller integer
 - Now we can say, in general, that:
 - n! = n * (n-1)!
 - But we need something else
 - We need a stopping case, or this will just go on and on and on
 - NOT good!
 - We let 0! = 1

So in "math terms", we say

•
$$n! = 1$$
 if $n = 0$

$$n! = n * (n-1)!$$
 if $n > 0$

- How do we do this recursively?
 - We need a function that we will call
 - And this function will then call itself (recursively)
 - until the stopping case (n = 0)

```
#include <stdio.h>

void Fact(int n);
int main(void) {
   int factorial = Fact(10);
   printf("%d\n", factorial);
   return 0;
}
```

```
Here's the Fact Function
int Fact (int n) {
   if (n = 0)
      return 1;
   else
      return (n * fact(n-1));
}
```

- This program prints the result of 10*9*8*7*6*5*4*3*2*1:
 - **3628800**

Here's what's going on...in pictures

```
Fact(10)
#include <stdio.h>
                                                Fact(9)
void Fact(int n);
                                                   Fact(8)
int main(void) {
                                                      Fact(7
   int factorial = Fact(10);
   printf("%d\n", factorial);
                                                         Fact(6)
   return 0;
                                                            Fact(5)
                                                               Fact(4)
                                                                           Fact(0)
                                                                           Returns 1
```


■ Here's what's goin on...in pictures

```
#include dio.h>

void F (int n);
int maic id) {
  int factorial = Fact(10);
  printf("%d\n", factorial);
  return 0;
}
```

```
Returns (9*40320)

Returns (9*40320)

Returns (8*5040)

720

Returns (7*720)

Returns (6*120)

Returns (5*24)

24

Returns (4*6)

Returns (3*2)

Returns (2*1)
```

Returns (1*1)

Returns 1

Now factorial has the value 3,628,800.

- General Structure of Recursive Functions:
 - What we can determine from previous examples:
 - When we have a problem, we want to break it into chunks
 - Where one of the chunks is a smaller version of the same problem
 - Factorial Example:
 - We utilized the fact that n! = n*(n-1)!
 - And we realized that (n-1)! is, in essence, an easier version of the original problem
 - Right?
 - We all should agree that 9! is a bit easier than 10!

- General Structure of Recursive Functions:
 - What we can determine from previous examples:
 - Eventually, we break down our original problem to such an extent that the <u>small sub-problem becomes quite</u> <u>easy to solve</u>
 - At this point, we don't make more recursive calls
 - Rather, we <u>directly return the answer</u>
 - Or complete whatever task we are doing
 - This allows us to think about a general structure of a recursive function

- General Structure of Recursive Functions:
 - Basic structure has 2 main options:
 - 1) Break down the problem further
 - Into a smaller sub-problem
 - 2) OR, the problem is small enough on its own
 - Solve it
 - In programming, when we have two options, we us an if statement
 - So here are our two constructs of recursive functions...

- General Structure of Recursive Functions:
 - 2 general constructs:
 - Construct 1:

```
if (terminating condition) {
          DO FINAL ACTION
}
else {
          Take one step closer to terminating condition
          Call function RECURSIVELY on smaller subproblem
}
```

Functions that return values take on this construct

- General Structure of Recursive Functions:
 - 2 general constructs:
 - Construct 2:

```
if (!(terminating condition) ) {
     Take a step closer to terminating condition
     Call function RECURSIVELY on smaller subproblem
}
```

void recursive functions use this construct

Example using Construct 1

- Our function (Sum Integers):
 - Takes in one positive integer parameter, n
 - Returns the sum 1+2+...+n
 - So our recursive function must <u>sum all the integers up</u> until (and including) n
- How do we do this recursively?
 - We need to solve this in such a way that part of the solution is a sub-problem of the EXACT same nature of the original problem.

- Example using Construct 1
 - Our function:
 - Using n as the input, we define the following function
 - f(n) = 1 + 2 + 3 + ... + n
 - Hopefully it is clear that this is our desired function
 - Example:
 - f(10) = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10
 - So the question is:
 - Given this function, f(n), how do we make it recursive???

Example using Construct 1

- Our function:
 - Using n as the input, we define the following function

•
$$f(n) = 1 + 2 + 3 + ... + n$$

REMEMBER:

- We want a function that solves this same problem
- But we want that problem to be <u>recursive</u>:
 - It should solve f(n) by reducing it to a <u>smaller problem</u>, <u>but of</u> the <u>same form</u>
- Just like the factorial example: n! = n * (n-1)!
 - (n-1)! was a smaller form of n!
- So think, what is a "smaller form" of our function, f(n)

- Example using Construct 1
 - Our function:
 - Using n as the input, we define the following function

•
$$f(n) = 1 + 2 + 3 + ... + n$$

So to make this recursive, can we say:

•
$$f(n) = 1 + (2 + 3 + ... + n)$$

- Does that "look" recursive?
- Is there a sub-problem that is the EXACT same form as the original problem?
 - NO!
- 2+3+...+n is <u>NOT</u> a sub-problem of the form 1+2+...+n

Example using Construct 1

- Our function:
 - Using n as the input, we get the following function

•
$$f(n) = 1 + 2 + 3 + ... + n$$

Let's now try this:

•
$$f(n) = 1 + 2 + ... + n = n + (1 + 2 + ... + (n-1))$$

- AAAHHH.
- Here we have an expression

which IS indeed a sub-problem of the same form

Example using Construct 1

- Our function:
 - Using n as the input, we get the following function

•
$$f(n) = 1 + 2 + 3 + ... + n$$

So now we have:

•
$$f(n) = 1 + 2 + ... + n = n + (1 + 2 + ... + (n-1))$$

- Now, realize the following:
 - Use an example:

•
$$f(10) = 1 + 2 + ... + 10 = 10 + (1 + 2 + ... + 9)$$

- And what is (1 + 2 + ... + 9)? It is f(9)!
- So look at what we can say:
- We can say that, f(10) = 10 + f(9)

- Example using Construct 1
 - Our function:
 - Using n as the input, we get the following function

$$f(n) = 1 + 2 + 3 + ... + n$$

So now we have:

•
$$f(n) = 1 + 2 + ... + n = n + (1 + 2 + ... + (n-1))$$

- Now, realize the following:
 - So, in general, we have: f(n) = n + f(n-1)
 - Right?
 - Just like f(10) = 10 + f(9)
 - So, we've defined our function, f(n), to be in terms of a <u>smaller version of itself</u>...in terms of f(n-1)

- Example using Construct 1
 - Our function:
 - Using n as the input, we get the following function

•
$$f(n) = 1 + 2 + 3 + ... + n$$

So now we have:

•
$$f(n) = 1 + 2 + ... + n = n + (1 + 2 + ... + (n-1))$$

- Now, realize the following:
 - So here is our function, <u>defined recursively</u>
 - f(n) = n + f(n-1)

- Example using Construct 1
 - Our function (now recursive):
 - f(n) = n + f(n-1)
 - Reminder of construct 1:

```
if (terminating condition) {
         DO FINAL ACTION
}
else {
         Take one step closer to terminating condition
         Call function RECURSIVELY on smaller subproblem
}
```


- Example using Construct 1
 - Our function:
 - f(n) = n + f(n-1)
 - Reminder of construct 1:
 - So we need to determine the terminating condition!
 - We know that f(0) = 0
 - So our terminating condition can be n = 0
 - Additionally, our recursive calls need to return an expression for f(n) in terms of f(k)
 - for some k < n</p>
 - We just found that f(n) = n + f(n-1)
 - So now we can write our actual function...

- Example using Construct 1
 - Our function: f(n) = n + f(n-1)

```
// Pre-condition: n is a positive integer.
// Post-condition: Function returns the sum
// 1 + 2 + ... + n
int sumNumbers(int n) {

    if ( n == 0 )
        return 0;
    else
        return (n + sumNumbers(n-1));
}
```


- Another example using Construct 1
 - Our function:
 - Calculates be
 - Some base raised to a power, e
 - The input is the base, b, and the exponent, e
 - So if the input was 2 for the base and 4 for the exponent
 - The answer would be 2⁴ = 16
 - How do we do this recursively?
 - We need to solve this in such a way that part of the solution is a sub-problem of the EXACT same nature of the original problem.

- Another example using Construct 1
 - Our function:
 - Using b and e as input, here is our function
 - $f(b,e) = b^e$
 - So to make this recursive, can we say:
 - $f(b,e) = b^e = b^*b^{(e-1)}$
 - Does that "look" recursive?
 - YES it does!
 - Why?

Example with numbers:

 $f(2,4) = 2^4 = 2*2^3$ ---So we solve the larger problem (2⁴) by reducing it to a smaller problem (2³).

- Cuz the <u>right side is indeed a sub-problem of the original</u>
- We want to evaluate be
- And our right side evaluates b^(e-1)

- Another example using Construct 1
 - Our function:
 - $f(b,e) = b*b^{(e-1)}$
 - Reminder of construct 1:

```
if (terminating condition) {
        DO FINAL ACTION
}
else {
        Take one step closer to terminating condition
        Call function RECURSIVELY on smaller subproblem
}
```


- Another example using Construct 1
 - Our function:
 - $f(b,e) = b*b^{(e-1)}$
 - Reminder of construct 1:
 - So we need to determine the terminating condition!
 - We know that $f(b,0) = b^0 = 1$
 - So our terminating condition can be when e = 0
 - Additionally, our recursive calls need to return an expression for f(b,e) in terms of f(b,k)
 - for some k < e</p>
 - We just found that f(b,e) = b*b^(e-1)
 - So now we can write our actual function...

- Another example using Construct 1
 - Our function:

```
// Pre-conditions: e is greater than or equal to 0.
// Post-conditions: returns be.
int Power(int base, int exponent) {
    if ( exponent == 0 )
        return 1;
    else
        return (base*Power(base, exponent-1));
}
```


Example using Construct 2

- Remember the construct:
 - This is used when the return type is void

```
if (!(terminating condition) ) {
     Take a step closer to terminating condition
     Call function RECURSIVELY on smaller subproblem
}
```


- Example using Construct 2
 - Our function:
 - Takes in a string (character array)
 - Also takes in an integer, the length of the string
 - The function simply prints the string in REVERSE order
 - So what is the terminating condition?
 - We will print the string, in reverse order, character by character
 - So we <u>terminate</u> when there are <u>no more characters left</u> to <u>print</u>
 - The 2nd argument to the function (length) will be reduced until it is 0 (showing no more characters left to print)

- Example using Construct 2
 - Our function:

```
void printReverse(char word[], int length) {
    if (length > 0) {
        printf("%c", word[length-1]);
        printReverse(word, length-1);
    }
}
```

- What's going on:
 - Let's say the word is "computer"
 - 8 characters long
 - So we print word[7]
 - Which would refer to the "r" in computer

- Example using Construct 2
 - Our function:

```
void printReverse(char word[], int length) {
    if (length > 0) {
        printf("%c", word[length-1]);
        printReverse(word, length-1);
    }
}
```

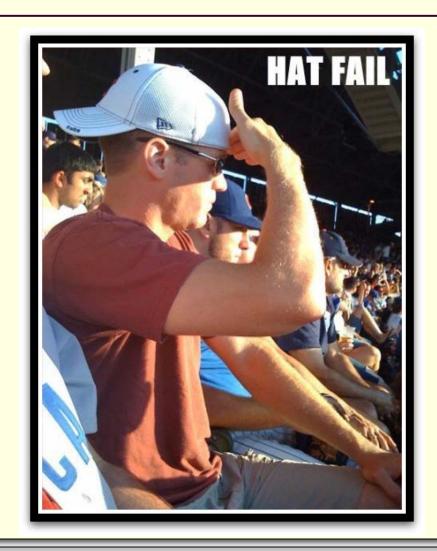
- What's going on:
 - We then recursively call the function
 - Sending over two arguments:
 - The string, "computer"
 - And the length, minus 1

- Example using Construct 2
 - Our function:

```
void printReverse(char word[], int length) {
    if (length > 0) {
        printf("%c", word[length-1]);
        printReverse(word, length-1);
    }
}
```

- What's going on:
 - After the first recursive call, length is now 7
 - Therefore, word[6] is printed
 - Referring to the "e" in computer
 - Then we recurse (again and again) and finish once length <= 0

Brief Interlude: Human Stupidity



Recursion – Practice Problem

Practice Problem:

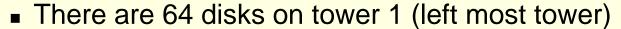
- Write a recursive function that:
 - Takes in two non-negative integer parameters
 - Returns the product of these parameters
 - But it does NOT use multiplication to get the answer
 - So if the parameters are 6 and 4
 - The answer would be 24
- How do we do this not actually using multiplication
- What another way of saying 6*4?
- We are adding 6, 4 times!
- 6*4 = 6 + 6 + 6 + 6
- So now think of your function...

Recursion – Practice Problem

- Practice Problem:
 - Solution:

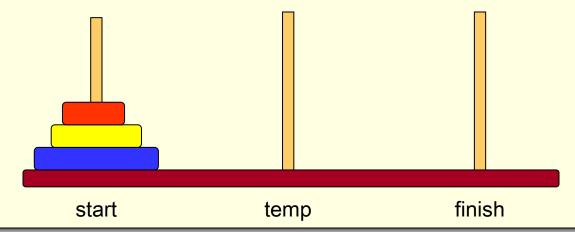
```
// Precondition: Both parameters are
// non-negative integers.
// Postcondition: The product of the two
// parameters is returned.
function Multiply(int first, int second) {
    if (( second == 0 ) || ( first = 0 ))
        return 0;
    else
        return (first + Multiply(first, second-1));
}
```


- Towers of Hanoi:
 - Here's the problem:
 - There are three vertical poles



- The disks are arranged with the largest diameter disks at the bottom
- Some monk has the daunting task of moving disks from one tower to another tower
 - Often defined as moving from Tower #1 to Tower #3
 - Tower #2 is just an intermediate pole
 - He can only move ONE disk at a time
 - And he MUST follow the rule of <u>NEVER putting a bigger</u> disk on top of a smaller disk

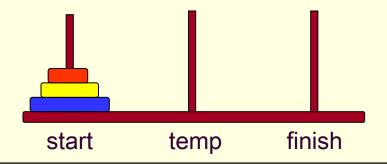
- Towers of Hanoi:
 - Solution:
 - We must find a recursive strategy
 - Thoughts:
 - Any tower with more than one disk must clearly be moved in pieces
 - If there is just one disk on a pole, then we move it

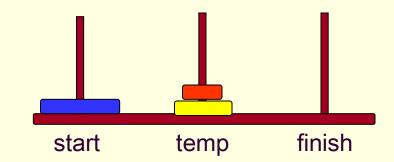


Towers of Hanoi:

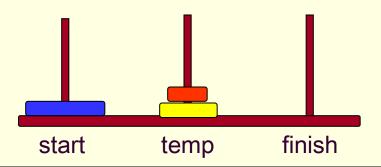
- Solution:
 - Irrespective of the number of disks, the following steps MUST be carried out:
 - The bottom disk needs to move to the destination tower
 - So step 1 must be to move all disks above the bottom disk to the intermediate tower
 - In step 2, the bottom disk can now be moved to the destination tower
 - 3) In step 3, the disks that were initially above the bottom disk must now be put back on top
 - Of course, at the <u>destination</u>
 - Let's look at the situation with only 3 disks...

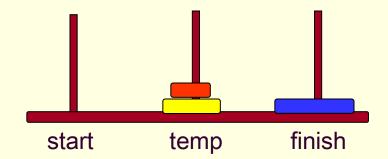
- Towers of Hanoi:
 - Solution:
 - Step 1:
 - Move 2 disks from start to temp using finish Tower.
 - To understand the recursive routine, let us <u>assume that we</u> <u>know how to solve 2 disk problem</u>, and go for the next step.
 - Meaning, we "know" how to move 2 disks appropriately





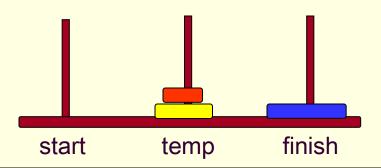
- Towers of Hanoi:
 - Solution:
 - Step 2:
 - Move the (remaining) single disk from start to finish
 - This does not involve recursion
 - and can be carried out without using temp tower.
 - In our program, this is just a print statement
 - Showing what we moved and to where

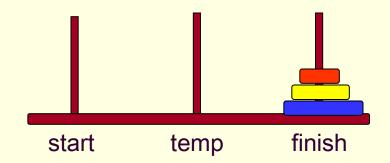




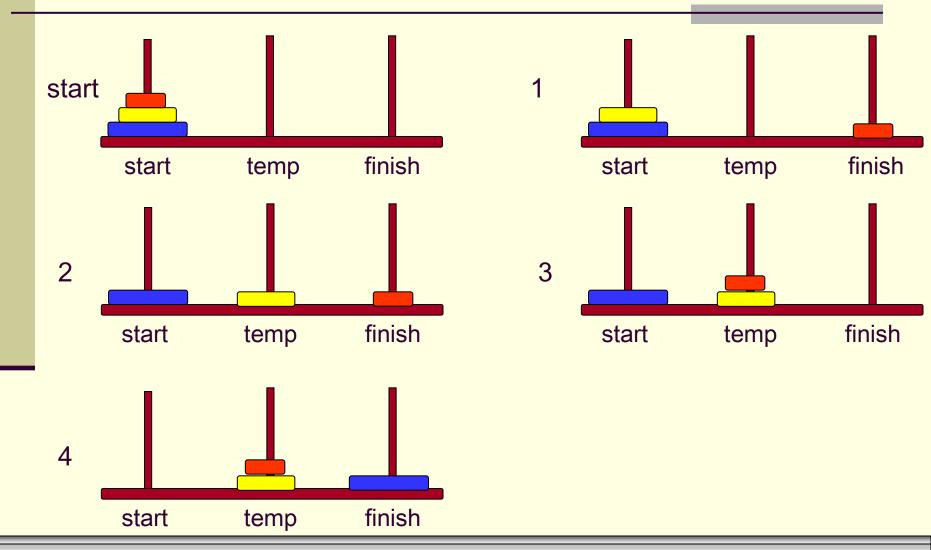
© Jonathan Cazalas More Recursion page 42

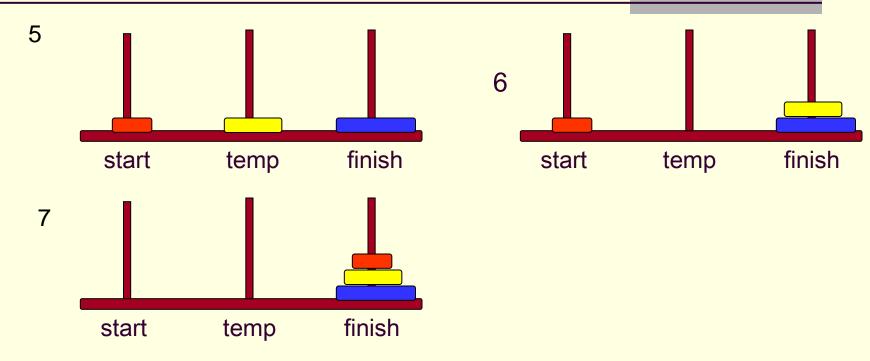
- Towers of Hanoi:
 - Solution:
 - Step 3:
 - Now we are at the last step of the routine.
 - Move the 2 disks from temp tower to finish tower using the start tower
 - This is also done recursively





© Jonathan Cazalas More Recursion page 43





- # of steps needed:
 - We had 3 disks requiring seven steps
 - 4 disks would require 15 steps
 - n disks would require 2ⁿ -1 steps
 - HUGE number

- Towers of Hanoi:
 - Solution:

```
// Function Prototype
void moveDisks(int n, char start, char finish, char temp);
void main() {
      int disk;
       int moves:
      printf("Enter the # of disks you want to play with:");
       scanf("%d",&disk);
       // Print out the # of moves required
      moves = pow(2,disk)-1;
      printf("\nThe No of moves required is=%d \n",moves);
       // Initiate the recursion
      moveDisks(disk,'A','C','B');
```


- Towers of Hanoi:
 - Solution:

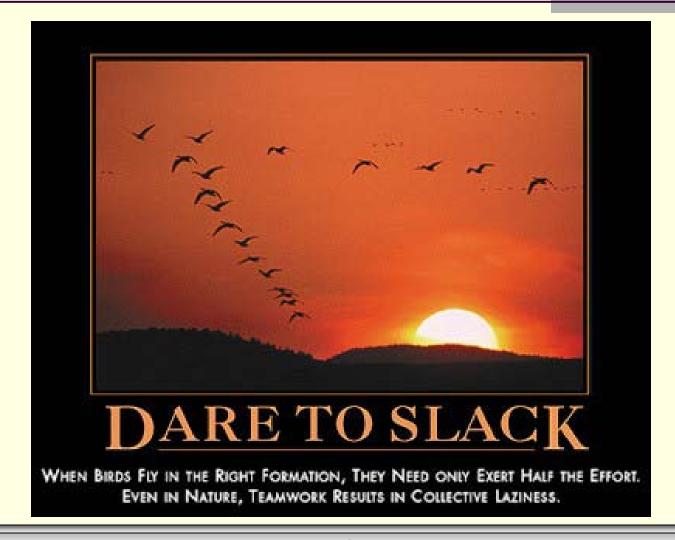
```
void moveDisks(int n, char start, char finish, char temp) {
    if (n == 1) {
        printf("Move Disk from %c to %c\n", start, finish);
    }
    else {
        moveDisks(n-1, start, temp, finish);
        printf("Move Disk from %c to %c\n", start, finish);
        moveDisks(n-1, temp, finish, start);
    }
}
```


Recursion

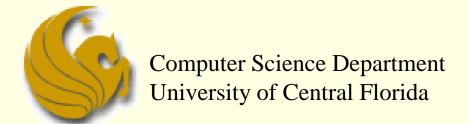
WASN'T THAT **ENCHANTING!**

(Sorry, wanted a "word of the day", and this is what I got from the wife!)

Daily Demotivator



More Recursion



COP 3502 - Computer Science I