
Computer Science Department
University of Central Florida

C-Programming Review

COP 3502 – Computer Science I

C-Programming Review page 2

C-Programming Review

POINTERS

C-Programming Review page 3

Review of pointers

 A pointer is just a memory location.
 A memory location is simply an integer value,

that we interpret as an address in memory.
 The contents at a particular memory location are

just a collection of bits – there’s nothing special
about them that makes them ints, chars, etc.
 How you want to interpret the bits is up to you.

 Is this... an int value?
... a pointer to a memory address?
... a series of char values?

0xfe4a10c5

C-Programming Review page 4

Review of pointer variables

 A pointer variable is just a variable, that contains
a value that we interpret as a memory address.

 Just like an uninitialized int variable holds some
arbitrary “garbage” value,
an uninitialized pointer variable points to some
arbitrary “garbage address”

char *m;

(char *)

m

C-Programming Review page 5

How can you test whether a pointer
points to something meaningful?
 There is a special pointer value NULL, that signifies

“pointing to nothing”. You can also use the value 0.

char *m = NULL;

...

if (m) { ... safe to follow the pointer ... }

 Here, m is used as a Boolean value
 If m is “false”, aka 0, aka NULL, it is not pointing to anything
 Otherwise, it is (presumably) pointing to something good
 Note: It is up to the programmer to assign NULL values when

necessary

C-Programming Review page 6

Indirection operator *

 Moves from address to contents

char *m = ″dog″;

char result = *m;

m gives an address of a char
*m instructs us to take the contents of that address
result gets the value ′d′

(char *)

m

d
(char)

o
(char)

g
(char)

NUL
(char)

(char)

result

d
(char)

C-Programming Review page 7

Address operator &

 Instead of contents, returns the address

char *m = ″dog″,

**pm = &m;

pm needs a value of type char **
 Can we give it *m? No – type is char
 Can we give it m? No – type is char *
 &m gives it the right value – the address of a char * value

(char *)

(char **)

m

pm

d
(char)

o
(char)

g
(char)

NUL
(char)

C-Programming Review page 8

Pointer arithmetic
 C allows pointer values to be incremented by

integer values

char *m = ″dog″;

char result = *(m + 1);

m gives an address of a char
(m + 1) gives the char one byte higher
*(m + 1) instructs us to take the contents of that address
result gets the value ′o′

(char *)

m

d
(char)

o
(char)

g
(char)

NUL
(char)

(char)

result

o
(char)

C-Programming Review page 9

Pointer arithmetic
 A slightly more complex example:

char *m = ″dog″;

char result = *++m;

m gives an address of a char
++m changes m, to the address one byte higher,

and returns the new address
*++m instructs us to take the contents of that location
result gets the value ′o′

(char *)

m

d
(char)

o
(char)

g
(char)

NUL
(char)

(char)

result

o
(char)

C-Programming Review page 10

Pointer arithmetic
 How about multibyte values?

 Q: Each char value occupies exactly one byte, so obviously
incrementing the pointer by one takes you to a new char value...
But what about types like int that span more than one byte?

 A: C “does the right thing”: increments the pointer by
the size of one int value

int a[2] = {17, 42};
int m = a;
int result = *++m;

(int *)

m
(char)

result

42
(int)

17
(int)

42
(int)

C-Programming Review page 11

Example: initializing an array
#define N_VALUES 5

float values[N_VALUES];

float *vp;

for (vp = &values[0]; vp < &values[N_VALUES];)

*vp++ = 0;

(float *)

vp

(float) (float) (float) (float) (float)

&values[0]
&values
[N_VALUES]

values

(float [])
0

(float)

0
(float)

0
(float)

0
(float)

0
(float) (done!)

C-Programming Review page 12

A note on assignment: Rvalues vs.
Lvalues
 What’s really going on in an assignment?

 Different things happen on either side of the =
int a = 17, b = 42;

b = a;

17
(int)

a

42
(int)

b

a is the “rvalue” (right value)
We go to the address given by a...

and get the contents (17)

b is the “lvalue” (left value)
We go to the address given by b...and get the contents?

No! We don’t care about 42!
We just want the address of b – to store 17 into

C-Programming Review page 13

A note on assignment: Rvalues vs.
Lvalues
 This explains a certain “asymmetry” in

assignments involving pointers:

char *m = NULL, **pm = NULL;

m = “dog”;

pm = &m;

(char *)

(char **)

m

pm

d
(char)

o
(char)

g
(char)

NUL
(char)

Here, m is an lvalue – It’s understood
that the address of m is what’s needed

Once again, we need the address of m –
but since it’s an rvalue, just plain m will give the contents of m

– use & to get the address instead

C-Programming Review page 14

Example: strcpy “string copy”
char *strcpy(char *dest, const char *src)

 (assume that) src points to a sequence of char
values that we wish to copy, terminated by NUL

 (assume that) dest points to an accessible
portion of memory large enough to hold the
copied chars

 strcpy copies the char values of src to the
memory pointed to by dest

 strcpy also gives dest as a return value

C-Programming Review page 15

Example: strcpy “string copy”
char *strcpy(char *dest, const char *src) {

const char *p;

char *q;

for(p = src, q = dest; *p != '\0'; p++, q++)

*q = *p;

*q = '\0';

return dest;

}

d
(char)

o
(char)

g
(char)

NUL
(char)

(char) (char) (char) (char)

(char *)

src

(char *)

dest

(char *) (char *)p q

d
(char)

o
(char)

g
(char)

NUL
(char)

C-Programming Review page 16

C-Programming Review

ARRAYS

C-Programming Review page 17

Review of arrays

 There are no array variables in C – only array
names
 Each name refers to a constant pointer
 Space for array elements is allocated at declaration

time
 Can’t change where the array name refers to…

 but you can change the array elements,
via pointer arithmetic

int m[4];

(int [])

m

???
(int)

???
(int)

???
(int)

???
(int)

C-Programming Review page 18

Subscripts and pointer arithmetic

 array[subscript] equivalent to *(array +
(subscript))

 Strange but true: Given earlier declaration of m,
the expression 2[m] is legal!
 Not only that: it’s equivalent to *(2+m)

*(m+2)

m[2]

C-Programming Review page 19

Array names and pointer variables,
playing together
int m[3];

int *mid = m + 1;

int *right = mid[1];

int *left = mid[-1];

int *beyond = mid[2];

(int [])

beyond

???
(int)

???
(int)

???
(int)

(int [])

(int [])

(int [])

(int [])

mid

right

left

m
subscript OK
with pointer

variable

compiler may not catch this –
runtime environment certainly won’t

C-Programming Review page 20

 In C, arguments are passed “by value”
 A temporary copy of each argument is created, solely for

use within the function call
void f(int x, int *y) { … }

void g(…) {

int a = 17, b = 42;

f(a, &b);

…

}

 Pass-by-value is “safe” in that the function plays only
in its “sandbox” of temporary variables –
 can’t alter the values of variables in the callee (except via

the return value)

Array names as function arguments

17
(int)

42
(int)

g

b

17
(int)

x y

(int [])

f

a

C-Programming Review page 21

Array names as function arguments
 But, functions that take arrays as arguments can

exhibit what looks like “pass-by-reference”
behavior, where the array passed in by the
callee does get changed
 Remember the special status of arrays in C –

They are basically just pointers.
 So arrays are indeed passed by value –

but only the pointer is copied, not the array elements!
 Note the advantage in efficiency (avoids a lot of copying)
 But – the pointer copy points to the same elements as the

callee’s array
 These elements can easily be modified via pointer

manipulation

C-Programming Review page 22

Array names as function arguments
 The strcpy “string copy” function puts this

“pseudo” call-by-reference behavior to good use
void strcpy(char *buffer, char const *string);

void f(…) {

char original[4] = ″dog″;

char copy[4];

strcpy(copy, original);

}
(char [])

original

d
(char)

o
(char)

g
(char)

NUL
(char)

(char [])

copy

???
(char)

???
(char)

???
(char)

???
(char)

f

(char [])

string

(char [])

buffer

strcpy

d
(char)

o
(char)

g
(char)

NUL
(char)

C-Programming Review page 23

When can array size be omitted?

 There are a couple of contexts in which an array
declaration need not have a size specified:
 Parameter declaration:
int strlen(char string[]);

 As we’ve seen, the elements of the array argument are not
copied, so the function doesn’t need to know how many
elements there are.

 Array initialization:
int vector[] = {1, 2, 3, 4, 5};

 In this case, just enough space is allocated to fit all (five)
elements of the initializer list

C-Programming Review page 24

Multidimensional arrays

 How to interpret a declaration like:
int d[2][4];

 This is an array with two elements:
 Each element is an array of four int values

 The elements are laid out sequentially in
memory, just like a one-dimensional array
 Row-major order: the elements of the rightmost

subscript are stored contiguously

(int) (int) (int) (int) (int) (int) (int) (int)

d[0][0] d[0][1] d[0][2] d[0][3] d[1][0] d[1][1] d[1][2] d[1][3]

d[0] d[1]

C-Programming Review page 25

int d[2][4];

d [1] [2]

Subscripting in a multidimensional
array

(int) (int) (int) (int) (int) (int) (int) (int)

d[0][0] d[0][1] d[0][2] d[0][3] d[1][0] d[1][1] d[1][2] d[1][3]

d[0] d[1]

(d+1)(*(d+1)+2)

Increment by the size of
1 array of 4 ints

Then increment by the
size of 2 ints

C-Programming Review page 26

Why do we care about storage
order?
 If you keep within the “paradigm” of the

multidimensional array, the order doesn’t
matter…

 But if you use tricks with pointer arithmetic,
it matters a lot

 It also matters for initialization
 To initialize d like this:

 use this:
int d[2][4] = {0, 1, 2, 3, 4, 5, 6, 7};

 rather than this
int d[2][4] = {0, 4, 1, 5, 2, 6, 3, 7};

0 1 2 3
4 5 6 7

C-Programming Review page 27

Multidimensional arrays as
parameters
 Only the first subscript may be left unspecified
void f(int matrix[][10]); /* OK */

void g(int (*matrix)[10]); /* OK */

void h(int matrix[][]); /* not OK */

 Why?
 Because the other sizes are needed for scaling when evaluating

subscript expressions (see slide 10)
 This points out an important drawback to C:

Arrays do not carry information about their own sizes!
If array size is needed, you must supply it somehow
(e.g., when passing an array argument, you often have to pass
an additional “array size” argument) – bummer

C-Programming Review page 28

C-Programming Review

STRINGS

C-Programming Review page 29

Review of strings

 Sequence of zero or more characters, terminated
by NUL (literally, the integer value 0)

 NUL terminates a string, but isn’t part of it
 important for strlen() – length doesn’t include the NUL

 Strings are accessed through pointers/array
names

 string.h contains prototypes of many useful
functions

C-Programming Review page 30

String literals

 Evaluating ″dog″ results in memory allocated for
three characters ′d ′, ′ o ′, ′ g ′, plus
terminating NUL

char *m = ″dog″;

 Note: If m is an array name, subtle difference:
char m[10] = ″dog″;

10 bytes are allocated for this array
This is not a string literal;

It’s an array initializer in disguise!
Equivalent to

{′d′,′o′,′g′,′\0′}

C-Programming Review page 31

String manipulation functions

 Read some “source” string(s), possibly write to
some “destination” location

char *strcpy(char *dst, char const *src);

char *strcat (char *dst, char const *src);

 Programmer’s responsibility to ensure that:
 destination region large enough to hold result
 source, destination regions don’t overlap

 “undefined” behavior in this case –
according to C spec, anything could happen!

char m[10] = ″dog″;

strcpy(m+1, m);

Assuming that the implementation of strcpy starts
copying left-to-right without checking for the presence of a

terminating NUL first, what will happen?

C-Programming Review page 32

strlen() and size_t
size_t strlen(char const *string);

/* returns length of string */

 size_t is an unsigned integer type, used to define
sizes of strings and (other) memory blocks
 Reasonable to think of “size” as unsigned”...
 But beware! Expressions involving strlen() may be

unsigned (perhaps unexpectedly)
if (strlen(x) – strlen(y) >= 0) ...

 avoid by casting:
((int) (strlen(x) – strlen(y)) >= 0)

 Problem: what if x or y is a very large string?
 a better alternative: (strlen(x) >= strlen(y))

always true!

C-Programming Review page 33

strcmp() “string comparison”
int strcmp(char const *s1, char const *s2);

 returns a value less than zero if s1 precedes s2 in
lexicographical order;

 returns zero if s1 and s2 are equal;
 returns a value greater than zero if s1 follows s2.

 Source of a common mistake:
 seems reasonable to assume that strcmp returns

“true” (nonzero) if s1 and s2 are equal; “false” (zero)
otherwise

 In fact, exactly the opposite is the case!

C-Programming Review page 34

C-Programming Review

STRUCTS

C-Programming Review page 35

C structures: aggregate, yet scalar
 aggregate in that they hold multiple data items at

one time
 named members hold data items of various types
 like the notion of class/field in C or C++

– but without the data hiding features

 scalar in that C treats each structure as a unit
 as opposed to the “array” approach: a pointer to a collection

of members in memory
 entire structures (not just pointers to structures) may be

passed as function arguments, assigned to variables, etc.
 Interestingly, they cannot be compared using ==

(rationale: too inefficient)

C-Programming Review page 36

Structure declarations

 Combined variable and type declaration
struct tag {member-list} variable-list;

 Any one of the three portions can be omitted

struct {int a, b; char *p;} x, y; /* omit tag */

 variables x, y declared with members as described:
int members a, b and char pointer p.

 x and y have same type, but differ from all others –
even if there is another declaration:
struct {int a, b; char *p;} z;

/* z has different type from x, y */

C-Programming Review page 37

Structure declarations
struct S {int a, b; char *p;}; /* omit variables */

 No variables are declared, but there is now a
type struct S that can be referred to later

struct S z; /* omit members */

 Given an earlier declaration of struct S, this declares
a variable of that type

typedef struct {int a, b; char *p;} S;

/* omit both tag and variables */

 This creates a simple type name S
(more convenient than struct S)

C-Programming Review page 38

Recursively defined structures

 Obviously, you can’t have a structure that
contains an instance of itself as a member –
such a data item would be infinitely large

 But within a structure you can refer to structures
of the same type, via pointers

struct TREENODE {

char *label;

struct TREENODE *leftchild, *rightchild;

}

C-Programming Review page 39

Recursively defined structures

 When two structures refer to each other, one
must be declared in incomplete (prototype)
fashion

struct HUMAN;

struct PET {

char name[NAME_LIMIT];

char species[NAME_LIMIT];

struct HUMAN *owner;

} fido = {″Fido″, ″Canis lupus familiaris″};

struct HUMAN {

char name[NAME_LIMIT];

struct PET pets[PET_LIMIT];

} sam = {″Sam″, {fido}};

We can’t initialize the owner
member at this point,

since it hasn’t been declared yet

C-Programming Review page 40

 Direct access operator s.m
 subscript and dot operators have same precedence and

associate left-to-right, so we don’t need parentheses for
sam.pets[0].species

 Indirect access s->m: equivalent to (*s).m
 Dereference a pointer to a structure, then return a member of

that structure
 Dot operator has higher precedence than indirection operator ,

so parentheses are needed in (*s).m

(*fido.owner).name or fido.owner->name

Member access

. evaluated first: access owner member
* evaluated next: dereference pointer to HUMAN

. and -> have equal
precedence and associate

left-to-right

C-Programming Review page 41

struct COST { int amount;
char currency_type[2]; }

struct PART { char id[2];
struct COST cost;
int num_avail; }

layout of struct PART:

Here, the system uses 4-byte alignment of integers,
so amount and num_avail must be aligned
Four bytes wasted for each structure!

Memory layout

id amount num_avail

cost

currency_type

C-Programming Review page 42

A better alternative (from a space perspective):
struct COST { int amount;

char currency_type; }

struct PART { struct COST cost;

char id[2];

int num_avail;

}

Memory layout

idamount num_avail

cost

currency_type

C-Programming Review page 43

Structures as function arguments

 Structures are scalars, so they can be returned
and passed as arguments – just like ints, chars

struct BIG changestruct(struct BIG s);

 Call by value: temporary copy of structure is created
 Caution: passing large structures is inefficient

– involves a lot of copying
 avoid by passing a pointer to the structure

instead:
void changestruct(struct BIG *s);

 What if the struct argument is read-only?
 Safe approach: use const

Computer Science Department
University of Central Florida

C-Programming Review

COP 3502 – Computer Science I

	C-Programming Review
	C-Programming Review
	Review of pointers
	Review of pointer variables
	How can you test whether a pointer points to something meaningful?
	Indirection operator *
	Address operator &
	Pointer arithmetic
	Pointer arithmetic
	Pointer arithmetic
	Example: initializing an array
	A note on assignment: Rvalues vs. Lvalues
	A note on assignment: Rvalues vs. Lvalues
	Example: strcpy “string copy”
	Example: strcpy “string copy”
	C-Programming Review
	Review of arrays
	Subscripts and pointer arithmetic
	Array names and pointer variables,�playing together
	Array names as function arguments
	Array names as function arguments
	Array names as function arguments
	When can array size be omitted?
	Multidimensional arrays
	Subscripting in a multidimensional array
	Why do we care about storage order?
	Multidimensional arrays as parameters
	C-Programming Review
	Review of strings
	String literals
	String manipulation functions
	strlen() and size_t
	strcmp() “string comparison”
	C-Programming Review
	C structures: aggregate, yet scalar
	Structure declarations
	Structure declarations
	Recursively defined structures
	Recursively defined structures
	Member access
	Memory layout
	Memory layout
	Structures as function arguments
	C-Programming Review

