
AVL Trees 
 

In order to have a worst case running time for insert and delete 
operations to be O(log n), we must make it impossible for there 
to be a very long path in the binary search tree. The first 
balanced binary tree is the AVL tree, named after it's 
inventors, Adelson-Velskii and Landis. A binary search tree is 
an AVL tree iff each node in the tree satisfies the following 
property: 
 
The height of the left subtree can differ from the height of the 
right subtree by at most 1. 
 
Based on this property, we can show that the height of an AVL 
tree is logarithmic with respect to the number of nodes stored 
in the tree. 
 
In particular, for an AVL tree of height H, we find that it must 
contain at least FH+3 -1 nodes. (Fi is the ith Fibonacci number.) 
To prove this, notice that the number of nodes in an AVL tree 
is the 1 plus the number of notes in the left subtree plus the 
number of nodes in the right subtree. If we let SH represent the 
minimum number of nodes in an AVL tree with height H, we 
get the following recurrence relation: 
 
SH = SH-1 + SH-2 + 1 
 
We also know that S0=1 and S1=2. Now we can prove the 
assertion above through induction. 
 



For those of you who haven't seen induction yet, I won't "test" 
on it in this class. I'll try to explain the major steps of induction 
as best as I can, very briefly. Induction is used to prove that 
some statement or formula is true for all positive integers. 
Sometimes, it is difficult to prove a formula for all positive 
integers outright though. 
 
In these cases, it may be easier to prove that IF the formula is 
true for an integer, say, 10 (we can call this k), then it MUST 
BE true for the next integer 11 (this would be k+1). 
 
Finally, if we can prove that, AND we can show that the 
formula is true when you plug in 1 into it, it follows that the 
formula is true for all positive integers.  
 
Here's a simple example you can hopefully relate to (I 
apologize to women who have small wardrobes!!!): 
 
Assumptions: A female's wardrobe increases by 15% a year. A 
male's wardrobe increases by 10% a year. At the age of 20, a 
female has 50 pieces of clothing, while a male has 45. 
 
We will prove: That for all years over 20 years of age, females 
own more pieces of clothing than males. 
 
It is true for age 20 based on the given information. 
Assume it's true for age k, where k ≥ 20. 
 
Now, under that assumption we will prove it for k+1. Let the 
number of clothes a female has at the age of k be F. Let the 
number of clothes a male has at the same age be M. At age 
k+1, a female must have 1.15F pieces of clothing. This is 
greater than 1.1F. Using the inductive hypothesis, this is 
greater than 1.1M, which is the number of pieces of clothing a 
male owns at age k+1. 



Consider the following example: 
 
Given that the sum of the first k integers is k(k+1)/2, I will 
prove that the sum for the first k+1 integers is (k+1)(k+2)/2. 
 
1 + 2 + 3 + ... + (k+1) = (1 + 2 + 3 + .. + k) + (k+1) 
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because we are ASSUMING that the formula I have works for 
the first k integers.  
 
Now, add this up with a common denominator: 
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Now, what I have written above is a "template proof" that you 
can plug in any value for k. The problem being of course, we 
don't know if the formula I have actually holds for any value of 
k. BUT, I can simply check that it works for one by plugging 
k=1 into the equation below and verifying its truth: 
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The left hand side and right hand side both evaluate to 1, when 
plugging in k=1. So, this formula above is true when k=1. But, 
based on our template proof, if it is true for 1, it is true for k=2. 
And if it's true for k=2, it's true for k=3, etc. 



Now, consider this example about binary trees: 
 
We will prove that an inorder traversal of a binary search tree 
of any height (positive integer) yields the elements in numerical 
order. Certainly this is true for a binary tree of height 0, which 
has only one element in it. 
 
Now, assume this is true for a binary tree of height k or less. 
(This is a strong inductive hypothesis. For now, don't worry 
about how it differs from a normal inductive hypothesis.) 
 
Consider proving it for a binary search tree of height k+1: 
 
The tree must look like this: 
 
     Root 
        /              \ 
    Left  Right 
    Subtree Subtree 
 
It also follows that both the left and right subtrees have a 
height of k or less. During an inorder traversal, all the nodes in 
the left subtree are printed using an inorder traversal, then the 
root node is printed, then all the values in the right subtree are 
printed using an inorder traversal. 
 
Since the tree is a binary search tree, all the values in its left 
subtree are less than the root. These all print before the root 
prints. Furthermore, because this left subtree has height k or 
less, these all print in the proper order. Then the root is 
printed, which still maintains the proper order of nodes. 
Finally, all the values in the right subtree are printed. Since 
this subtree is of height k or less, these are ALSO printed in the 
right order, so that the WHOLE list is in the correct order, 
finishing the proof. 



Problem: Prove that SH = FH+3 -1. 
 
We will use induction on H, the height of the AVL tree. 
 
Base Cases H=0: LHS = 1, RHS = F3 - 1 = 2 - 1 = 1 
                    H=1: LHS = 2, RHS = F4 - 1 = 3 - 1 = 2 
 
Inductive hypothesis: For an arbitrary integer k <= H, assume 
that Sk = Fk+3 -1. 
 
Inductive step: Under the assumption above, prove for H=k+1 
that Sk+1 = Fk+1+3 -1. 
 
 
Sk+1 = Sk + Sk-1 + 1 (because to form an AVL tree with the min. 
                                 number of nodes of height k+1, one side of 
                                 the root must have height k and the other 
                                 k-1. This is because we need the sides to 
                                 be within one, but we want to minimize the 
                                 number of nodes. The only other option  
                                 would have been k and k, which would  
         NOT minimize the desired value.) 
       = (Fk+3 -1) + (Fk+2 -1) +1, using the I.H. twice 
       = (Fk+3 + Fk+2) - 1 
       = Fk+4 -1, using the defn. of Fibonacci numbers, 
                       to complete proof. 
 
It can be shown through recurrence relations, that  
 
Fn ≈ 1/√5 [(1 + √5)/2]n 
 
So now, we have the following: 
 
Sn ≈ 1/√5 [(1 + √5)/2]n+3 
 



This says that when the height of an AVL tree is n, the 
minimum number of nodes it contains is 1/√5 [(1 + √5)/2]n+3. 
 
So, in order to find the height of a tree with n nodes, we must 
replace Sn with n and replace n with h? Why is this the case? 
 
n ≈ 1/√5 [(1 + √5)/2]h+3 
n ≈ (1.618)h 
h ≈ log 1.618 n 
h = O(log 2 n) 
 
Now the question remains, how do we maintain an AVL tree? 
What extra work do we have to do to make sure that the AVL 
property is maintained? 
 
Basically whenever an insertion or deletion is done, it is 
possible that the new node added or taken away destroys the 
AVL property. In these sitiuations, we have to "rework" the 
tree so that the binary search tree and AVL properties are 
satisfied.  
 
When an imbalance is introduced to a tree, it is localized to 
three nodes and their four subtrees. Denote these three nodes 
as A, B, and C, in their inorder listing. Structurally, they may 
appear in various configurations. Here are the four 
possibilities: 
 
          C             C             A              A 
        /              /                      \              \ 
      B            A                        C            B 
    /                  \                      /                 \ 
 A                    B                  B                  C 



Denote the four subtrees as T0, T1, T2, and T3, also listed in 
their inorder listing. Here is where these would lie in the trees 
drawn above: 
 
             C                 C                  A                  A 
            /   \               /   \               /   \                /   \ 
         B    T3          A    T3           T0  C            T0   B 
        /  \                /  \                        /   \                 /  \ 
     A   T2            T0  B                  B     T3            T1 C 
    /   \                      /   \                /   \                        /  \ 
  T0   T1                T1   T2          T1   T2                   T2  T3 
 
 
No matter which of these structural imbalances exist, they can 
all be fixed the same way: 
 
     B 
          /       \ 
        A         C 
      /    \       /   \ 
    T0    T1    T2    T3 
 
Another way we can view these transformations is through two 
separate types or restructuring operations: a single rotation 
and a double rotation. 
 
Let's look at how both of these work. 
 
Here are the four cases we will look at: 
 
1) insertion into the left subtree of the left child of the root. 
2) insertion into the right subtree of the left child of the root. 
3) insertion into the left subtree of the right child of the root. 
4) insertion into the right subtree of the right child of the root. 
 



Technically speaking, cases 1 and 4 are symmetric as are 2 and 
3. 
 
For cases 1 and 4, we will perform a single rotation, and for 2 
and 3 we will do a double rotation. 
 
In the pictures I have above, pictures are in the order 1, 2, 3, 4, 
from left to right. Why are case 2 and case 3 called double 
rotations? Because we can achieve both by performing two 
rotations on the root node: 
 

C     C 
      /       \                   /     \ 
   A       T3        B      T3       (formed from left  
 /    \   ====>           /   \                rotation on A-B) 
T0   B       L    A  T2      
      /    \             /   \ 
    T1     T2                            T0    T1 
 

B              (formed from right 
           /       \            rotation of C-B) 
   ====>     A         C 
        R    /    \       /   \ 
     T0    T1    T2    T3 
 
 
Case 3 works symmetrically. 
 
It should be fairly easy to see that case 1 visually looks like a 
“right rotation” and case 4 looks like a “left rotation”. 



Insertion into an AVL Tree 
 
So, now the question is, how can we use these rotations to 
actually perform an insert on an AVL tree? 
 
Here are the basic steps involved: 
 
1) Do a normal binary tree insert. 
2) Restoring the tree based on this leaf node. 
 
This restoration is more difficult than just following the steps 
above. Here are the steps involved in the restoration of a node: 
 
1) Calculate the heights of the left and right subtrees, use this 
to set the potentially new height of the node. 
2) If they are within one of each other, recursively restore the 
parent node. 
3) If not, then perform the appropriate restructuring described 
above on that particular node, THEN recursively call the 
method on the appropriate parent node. 
 
Note: No recursive call is made if the node in question is the 
root node and has no parents. 
 
Also, one rebalancing will always do the trick, though we must 
make the recursive calls to move up the tree so that the heights 
stored at each node are properly recalculated. 



AVL Tree Insert Examples  
 

 
1) The most simple insert into an AVL Tree that causes a 
rebalance is inserting a third node into an AVL tree that 
creates a tree of height two. In this example, consider inserting 
the value 10: 
 
     50 
            / 
       25 
       / 
    10 (inserted here) 
 
After the insert, we trace up the tree, from 10 to 25 (which is 
also balanced), to 50. This node is unbalanced since the left 
subtree has height 1 and the right has height -1. The labels for 
the nodes are 50(C), 25(B), and 10(A). The restructure is as 
follows: 
 
     25 
           /      \ 
       10     50 
 
2) Consider inserting 20 into the following AVL Tree: 
 
        (C)30 
        /        \ 
       (A)15            50 
            /   \            
          4   27(B)      
                                        / 
             20 (inserted here) 
 



In this situation, the nodes 27 and 15 are balanced and we 
don’t discover an imbalance until we trace up to 30. At this 
point, we label the nodes A, B and C based on our trace up the 
tree. The three values we passed were 27, 15 and 30, 
respectively. Thus, our labels are A = 15, B = 27, and C = 30. 
 
Our resulting tree after rebalancing is as follows: 
 
     27 
          /      \ 
      15      30 
     /   \          \ 
           4    20        50 
 
 
3) Consider inserting 46 into the following AVL Tree: 
 
     32(A) 
    /    \ 
         16      48(C) 
        /     \  /          \ 
     8    24  (B)40    56 
          /      \     /   \ 
         36  44     52   60 
                                                           \ 
           46, inserted here 
 
Initially, using the standard binary search tree insert, 46 would 
go to the right of 44. Now, let's trace through the rebalancing 
process from this place. 
 
In this case, the node is balanced, so we march up to the parent 
node that stores 44. Then decide that the nodes storing 40 and 
48 are balanced as well. Finally, when we reach the root node 
storing 32, we realize that our tree is imbalanced.  



Now we identify A, B and C by looking at the last three nodes 
visited up the ancestral path. These are 40, 48 and 32, 
respectively. We have A = 32, B = 40 and C = 48. The 
corresponding restructuring is: 
 
 
     40(B) 
    /    \ 
         32(A)      48(C) 
        /     \  /          \ 
     16    36        44    56 
                    /      \             \     /   \ 
          8     24            46   52   60 
 
Using the variables from the last lecture, the node storing 40 is 
B, the node storing 32 is A, and the node storing 48 is C. T0 is 
the subtree rooted at 16, T1 is the subtree rooted at 36, T2 is the 
subtree rooted at 44, and T3 is the subtree rooted at 56. 
 
4) Now, for the fourth example, consider inserting 61 into the 
following AVL Tree: 
 
     32 
    /  \ 
         16    48(A) 
      /       \  /       \ 
    8       24      40          56(B) 
                  /                      /   \         /     \ 
                         4                    36  44     52     60(C) 
                                                                      /     \ 
                                                                     58    62 
                                                                              / 
           61, inserted 
 



Tracing through the code, we find the first place an imbalance 
occurs tracing up the ancestry of the node storing 61 is at the 
noce storing 56. This time, we have that node A stores 56, node 
B stores 60, and node C stores 62. Using our restructuring 
algorithm, we find the tallest grandchild of 56 to be 62, and 
rearrange the tree as follows: 
 

32 
    /  \ 
         16    48 
      /       \  /       \ 
    8       24      40          60 
                  /                      /   \         /     \ 
                         4                    36  44     56     62 
                                                              /  \      /      
                                                           52  58  61     
                                                                               
T0 is the subtree rooted at 52, T1 is the subtree rooted at 58, T2 
is the subtree rooted at 61, and T3 is a null subtree. 

  
 
 


