

Computer Science I – Spring 2012
Lab: Heaps (Solutions)

1) In an array-based implementation of a Heap, the left-child of the left-child of the node at
index i, if it exists, can be found at what array location?

It will be found at array position 4i

2) In an array-based implementation of a Heap, the right-child of the right-child of the node at
index i, if it exists, can be found at what array location?

It will be found at array position 4i + 3

3) Show the result of inserting the item 7 into the heap shown below:

 1
 / \
 3 7
 / \ / \
 12 6 9 8
 / \ / \ / \ /
 15 18 10 12 14 77 35

(Changes are marked in bold.)

4) Show the result of removing the minimum element from the original heap in question #2
(without 7) from above.

 3
 / \
 6 8
 / \ / \
 12 10 9 35
 / \ / \ /
 15 18 77 12 14
(Changes are marked in bold.)

5) Show the array representation of the original heap from question #2.

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13
value 1 3 8 12 6 9 35 15 18 10 12 14 77

6) Run the whole Make Heap function on the following random values:

 77
 / \
 8 45
 / \ / \
 12 2 20 67
 / \ / \
 1 11 7 46

 1
 / \
 2 20
 / \ / \
 8 7 45 67
 / \ / \
 12 11 77 46

7) Explain each step shown in the code below, for the percolateDown function:

void percolateDown(struct heapStruct *h, int index) {

 int min;

 if ((2*index+1) <= h->size) {

 min = minimum(h->heaparray[2*index], 2*index, h->heaparray[2*index+1], 2*index+1);

 if (h->heaparray[index] > h->heaparray[min]) {
 swap(h, index, min);
 percolateDown(h, min);
 }
 }
 else if (h->size == 2*index) {
 if (h->heaparray[index] > h->heaparray[2*index])
 swap(h, index, 2*index);
 }
}

(Note: Please reference heap.c without looking at this function, if necessary.)

Detailed explanations are given in the comments of heap.c, which is on the website under
the sample programs link.

