

COP 3502 - Computer Science I

- Announcement:
 - If you come to the exam late
 - And if at least one student has already left/finished
 - You will not be allowed to take the exam that day
 - And you will have to take a Makeup
 - So sounds like a good idea, right?
 - Just come late and you then get 2 more days to study!
 - For whatever reason, Makeup Exams are traditionally harder
 - Trust me, you do NOT want to do a makeup!

- Outline of Material Covered:
 - I. Arrays, Pointers, Strings, Files, Structs
 - Manipulation of array elements
 - Manipulation of struct components
 - Use of '.' vs '->'
 - Use of strings
 - strcmp, strlen, strcpy
 - Use of files (fopen, fscanf)
 - Dynamic memory allocation for arrays and for structs
 - malloc, calloc, and realloc

- Outline of Material Covered:
 - Linked Lists
 - Traversing a linked lists
 - Printing a list
 - Modifying list contents
 - How to allocate a node dynamically
 - Inserting elements anywhere in the list
 - Deleting elements anywhere in the list
 - You can be SURE to have at least one CODING question on linked lists
 - Everything is fair game including insert/delete.
 - Know the code!

Outline of Material Covered:

- III. Recursion
 - Fibonacci, Factorial, Binary Search
 - Writing recursive functions
 - Tracing through recursive functions
 - Towers of Hanoi
 - Permutation
 - Reversing a string
 - Also a good chance of having a recursion coding question

Outline of Material Covered:

- II. Algorithm Analysis
 - Big-O definition and finding the c value as shown in class
 - Understanding the various orders and what they mean
 - "Practical" Problems such as those on the slides and also during the lab
 - Analyzing code fragments and determining Big-O
 - Solving summations
 - Putting summations in their closed form (in terms of n)
 - Analyzing code fragments and using summations to determine the Big-O OR the specific number of a certain operation (multiplications, divisions, subtractions, etc.)

- How to study:
 - KNOW and UNDERSTAND the notes
 - Make sure you are 100% on the notes
 - Make sure you are 100% on all the lab questions and their respective solutions
 - Don't waste time memorizing algorithms
 - Understand how they work and WHY they work
 - And be prepared to come up with your own
 - Look at previous Foundation Exam tests
 - Practice some of the problems (ones that are applicable)
 - http://www.cs.ucf.edu/registration/exm/index.html

- Types of Questions:
 - Some short answer questions:
 - Tracing through code
 - Questions on an algorithm discussed in class
 - Small questions on code
 - Solve summations
 - Solve the "Practical" Problems
 - etc.
 - Writing Functions:
 - You will have to write functions
 - Almost guaranteed to be some recursive ones

Exam Aids:

- You may use one 8-1/2"x11" sheet of paper
 - FRONT AND BACK
 - Typed or written doesn't matter
 - I don't care what you put on it
- What you CANNOT use:
 - Any electronic device:
 - Calculator, phone, ipad, you get the idea
 - If you are seen holding ANY electronic device, you will get 10 points off immediately! If you were cheating with that device, then the consequences are, of course, far worse.

- So what is covered?
 - EVERYTHING until now
 - Even if I didn't "cover" it during this review
 - Anything and everything that was taught or shown in class or in the labs is fair game.

Questions:

COP 3502 - Computer Science I