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Topics

• Hash Tables
• (Recommended reading: Chapter 11)



Hash Tables

• Goal: Fast insertion and fast lookup
• The approach: Have a big array, and put 

elements into it at indices based on their 
values

• Performance (if things go well):
- O(1) insertion
- O(1) lookup
- O(1) deletion



The Hash Function

• The hash function is how the hash table 
decides where to put elements and where 
to find elements when looking them up

• Basic procedure for inserting element x 
into a hash table (h is the hash function):
- Compute h(x)
- Insert x at position h(x) in the array
- This has some problems that we'll talk 

about in a minute (hash collision)



The Hash Function

• Required properties of the hash function:
- The domain of the hash function must be the 

entire set of possible elements that might go 
into the hash table

- The range of the hash function must be 
integers representing valid indices in the 
array

- The output of the hash function must be 
deterministic (always the same for a given 
value)



The Hash Function

• Desirable properties of the hash function
- Output should appear to be random

 Note that it can't actually be random 
because we need elements to map to the 
same position every single time

- Output should be evenly distributed over the 
range of indices

- The hash function should easily generalize 
to arrays of arbitrary size



The Hash Function

• Examples of bad hash function for strings
- Use the ASCII value of the first character
- Sum the ASCII values of all the characters

• Not necessarily a great approach, but it's a whole lot better
- Suppose string s = c0c1…cn
- h(s) = (c0*1280+c1*1281+…+cn*128n) mod tablesize
- There are some issues with calculating that hash 

function because intermediate results could get pretty 
big, but with the right approach, the numbers can stay 
small



Hash Collisions

• No matter how well designed a hash 
function is, it faces the problem of hash 
collision, in which more than one value in 
the domain maps to the same position
- Why? Because the domain is a whole 

lot bigger than the range
• Hash collisions must have a way of being 

resolved



Hash Collision Resolution

• Very bad: Just overwrite values
• Linear probing

- Keep looking through the array 
linearly until you find a free spot and 
insert at the first free spot

- When doing lookup, you need to look 
for an empty spot in order to 
determine that the element isn't there



Hash Collision Resolution

• Linear probing
- Problem: Once the array starts getting 

too full, you might have to look for a 
while to find a free spot

- Problem: Clustering- values have a 
nasty tendency to clump together into 
clusters once the array starts filling up



Hash Collision Resolution

• Quadratic probing
- Instead of looking at position+1, 

position+2, position+3, etc., look at 
position+12, position+22, position+32.

- Significantly reduces effects of 
clustering

- Problem: If the array gets too full, it 
might be impossible to find a spot, 
even if free spots are available



Deletion from Hash Tables

• You can't just take the element out if 
you're resolving collisions with probing

• Lazy deletion- Take the element out, but 
leave a mark indicating that something 
was there

• Stuff can be added to a spot that was 
lazily deleted, but when doing lookup, a 
lazily deleted spot doesn't count as 
empty.



Rehashing

• If the hash table gets too full, you can 
expand it:
- Make a new table of roughly double 

the size
- Remove each element from the old 

table and put it into the new table 
based on the hash function for the 
new table



Hash Collision Resolution

• Separate Chaining
- Instead of only having one element at 

each array index, have a linked list
- When inserting an element, insert it at 

the head of the list it maps to
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