
Slides 11/21

COP 3502



Topics

• Hash Tables
• (Recommended reading: Chapter 11)



Hash Tables

• Goal: Fast insertion and fast lookup
• The approach: Have a big array, and put 

elements into it at indices based on their 
values

• Performance (if things go well):
- O(1) insertion
- O(1) lookup
- O(1) deletion



The Hash Function

• The hash function is how the hash table 
decides where to put elements and where 
to find elements when looking them up

• Basic procedure for inserting element x 
into a hash table (h is the hash function):
- Compute h(x)
- Insert x at position h(x) in the array
- This has some problems that we'll talk 

about in a minute (hash collision)



The Hash Function

• Required properties of the hash function:
- The domain of the hash function must be the 

entire set of possible elements that might go 
into the hash table

- The range of the hash function must be 
integers representing valid indices in the 
array

- The output of the hash function must be 
deterministic (always the same for a given 
value)



The Hash Function

• Desirable properties of the hash function
- Output should appear to be random

 Note that it can't actually be random 
because we need elements to map to the 
same position every single time

- Output should be evenly distributed over the 
range of indices

- The hash function should easily generalize 
to arrays of arbitrary size



The Hash Function

• Examples of bad hash function for strings
- Use the ASCII value of the first character
- Sum the ASCII values of all the characters

• Not necessarily a great approach, but it's a whole lot better
- Suppose string s = c0c1…cn
- h(s) = (c0*1280+c1*1281+…+cn*128n) mod tablesize
- There are some issues with calculating that hash 

function because intermediate results could get pretty 
big, but with the right approach, the numbers can stay 
small



Hash Collisions

• No matter how well designed a hash 
function is, it faces the problem of hash 
collision, in which more than one value in 
the domain maps to the same position
- Why? Because the domain is a whole 

lot bigger than the range
• Hash collisions must have a way of being 

resolved



Hash Collision Resolution

• Very bad: Just overwrite values
• Linear probing

- Keep looking through the array 
linearly until you find a free spot and 
insert at the first free spot

- When doing lookup, you need to look 
for an empty spot in order to 
determine that the element isn't there



Hash Collision Resolution

• Linear probing
- Problem: Once the array starts getting 

too full, you might have to look for a 
while to find a free spot

- Problem: Clustering- values have a 
nasty tendency to clump together into 
clusters once the array starts filling up



Hash Collision Resolution

• Quadratic probing
- Instead of looking at position+1, 

position+2, position+3, etc., look at 
position+12, position+22, position+32.

- Significantly reduces effects of 
clustering

- Problem: If the array gets too full, it 
might be impossible to find a spot, 
even if free spots are available



Deletion from Hash Tables

• You can't just take the element out if 
you're resolving collisions with probing

• Lazy deletion- Take the element out, but 
leave a mark indicating that something 
was there

• Stuff can be added to a spot that was 
lazily deleted, but when doing lookup, a 
lazily deleted spot doesn't count as 
empty.



Rehashing

• If the hash table gets too full, you can 
expand it:
- Make a new table of roughly double 

the size
- Remove each element from the old 

table and put it into the new table 
based on the hash function for the 
new table



Hash Collision Resolution

• Separate Chaining
- Instead of only having one element at 

each array index, have a linked list
- When inserting an element, insert it at 

the head of the list it maps to


	�COP 3502
	Topics
	Hash Tables
	The Hash Function
	The Hash Function
	The Hash Function
	The Hash Function
	Hash Collisions
	Hash Collision Resolution
	Hash Collision Resolution
	Hash Collision Resolution
	Deletion from Hash Tables
	Rehashing
	Hash Collision Resolution

