Link Lists Gone Wild;
Circular and Doubly
Linked Lists

r | Computer Science Department
. University of Central Florida

COP 3502 — Computer Science |

Circular Lists

* The linked Iist structures that we have just
examined are all of the same type, called a singly-
[inked list. Each node 1n the list contams a single
reference (poimnter) to the node which logically
follows 1t m the list. There are many different
variations of linked lists that have been developed.

— circular sigly-linked lists —the last node m the list
contains refers to the first node in the list.

Inserting a Node at Front of a Circular List

* Letus add a node contaming data d, in front of a circular
list pointed by pTail.

* The first node will be the node next to the tail node. The
new node will have to be mserted just before the first node.
1.e. 1n between the tail node and the first node.

pTail

get a new node from memory .
put the data d in that node, and make 1t pomt to itself.
if pTail 1s empty, this node will be the only node in the circular list.

if 1t 1s not the first node, then 1its next part should contain the
address which pTail was pointing to.

finally. 1ts address must be stored in the next part of pTail.

Y

Inserting a Node at Front of a Circular List

struct node™ pNew = (struct node™) (malloc(sizeof(struct node)));
pNew ->data = d,
pNew->next = pNew;
if (pTail==NULL)
pTail = pNew;,
else{
pNew->next = pTail->next;
plail->next = pNew;,
/

« What 1s the complexity of this operation?

« Since the complete list 1s not being traversed, 1t 1s O(1).

Inserting a Node at the End of a Circular List

Let us add a node contaimning data d, at end of a circular list ponted by
pTail.

The new node will be placed just after the tail node (which 1s the last
node of the list). which means agam 1t will have to be mserted 1n
between the tail node and the first node.

The code will be 1dentical to the code given before for mserting a node
in front of the list. except that pTail should now point to the new last
node.

What 1s the complexity? It 1s again O(1).
— Compare the complexity with the complexity of adding a node at the end

of a standard linked list which 1s O(n), because 1 that case you have to

traverse the complete list to reach the last node (with NULL value in next
field).

Inserting a Node at the End of a Circular List

struct node™ pNew = (struct node™) (malloc(sizeof(struct node)));
pNew ->data = d,
pNew->next = pNew;,
if (pTail==NULL)
pTail = pNew;

else{

pNew->next = pTail->next;

pTail->next = pNew;

plail = pNew;
/

Deleting the First Node 1n a Circular List

pTail

* The first node can be deleted by simply replacing
the next field of tail node with the next field of the
first node.

temp = pTail->next;
plail->next = temp->next,

free(temp);

Deleting the Last Node 1n a Circular List

Deletion of last node 1s a more complicated case.
— The list has to be traversed to reach the last but one node.

— This has to be named as the tail node, and 1ts next field has to point
to the first node.

* Consider the following list. To delete the last node 9, the
list has to be traversed till you reach 8. The next field of 8
has to be changed to point to 3, and this node must be
renamed pTail.

« This 1s left as an exercise for you. Write the code and work
out 1ts complexity.

Doubly Linked Lists

* doubly-linked lists — each node 1 the list contains
a reference to both the node which immediately
precedes it and to the node which follows it 1n the
l1st.

« < < - - —
— —T —m > T

+—»

o circular doubly-linked lists — same as a circular
singly-linked list except that the nodes in the list
are doubly-linked.

7 -+ <+
> ' —P E—

§
l

Doubly Linked List
Simple linked lists only allow making search from the beginning to end.

Doubly linked lists allow searches mn both directions (while keeping a single
pointer)

Each node contains two pointers, one to the next node. one to the preceding node.
struct dlINode {

int data;

struct dlINode *left:

struct dlINode *right:

o

left “2F% rignt
Node Structure:pHead . —
+—T e
pHead
a — - >
Advantage:

— 1msertion and deletion can be easily done with a single pointer.

Doubly Linked List - Deletion

pHead pi"-l'--.--././'.-"'k.'
wl *tk-.h'
I E—
1 S
=« :

.
L] a®
.........
"""""
llllllllllllllll

pCur->left->right = pCur->r1ght;
pCur->right->left = pCur->left;

(Assuming pCur->left and pCur->11ght are
not NULL)

Doubly Linked List - Insertion

pCur
pHead \
. 1>,
JB
pNew->left = pCur; T
pNew->right = pCur->right;
plew

pCur->right->left = pNew:
pCur->11ght = pNew:

* Disadvantage of Doubly Linked Lists:
— extra space for extra link fields
— maintaining extra link during insertion and deletion

Link Lists Gone Wild;
Circular and Doubly
Linked Lists

r | Computer Science Department
. University of Central Florida

COP 3502 — Computer Science |

	Link Lists Gone Wild:�Circular and Doubly�Linked Lists
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Link Lists Gone Wild:�Circular and Doubly�Linked Lists

