
Computer Science Department
University of Central Florida

Dynamic Memory
Allocation in C

COP 3502 – Computer Science I

Dynamic Memory Allocation in C page 2

Dynamically Allocated Mem. in C

 Throughout the C course (COP 3223)
 All variable declarations were statically allocated

memory
 The word “static” means “not changing”
 The word “dynamic” means “changeable”

 roughly speaking

 So we essentially work with two types of
memory:
 Static
 Dynamic

Dynamic Memory Allocation in C page 3

Dynamically Allocated Mem. in C

 Static Memory in C (review)
 Memory requirements are known at compile time
 After a program compiles, we can perfectly predict

how much memory will be needed for statically
allocated variables

 Although the program may receive different input on
different executions of the code
 This does NOT affect how much memory is allocated

 One serious consequence of this:
 A statically allocated variable can only have its memory

reserved while the function, within which it was declared, is
running

 Ex: if you declare an “int x” within function A, once function
A has completed, the memory for x is not reserved.

Dynamic Memory Allocation in C page 4

Dynamically Allocated Mem. in C

 Dynamic Memory in C
 Memory requirements are NOT known (for sure) at

compile time
 Perhaps different amounts of memory are allocated on

different executions of the program
 That is, if the input affects the memory allocation

 Benefit: memory allocated within a function can be
made available outside the function
 This memory must be allocated within the function
 And it must be allocated dynamically

 Caveat:
 Dynamically allocated memory is NOT “freed” automatically
 It is the programmers job to free memory
 This is done with the free function

Dynamic Memory Allocation in C page 5

Dynamically Allocated Mem. in C

 Conceptually, memory is divided into:
1) program memory which is used for main and all called

functions, and
2) data memory which is used for global data, constants,

local definitions and dynamic memory.
 Obviously, main must be in memory at all times.

 Each called function must only be in memory while it or any of its
called functions are active.

 Since multiple copies of a function may be active at one time
(recursion) the multiple copies of the variables are maintained on
the stack.

 The heap memory is unused memory allocated to the program
and available to be assigned during execution.

 The next page illustrates the conceptual view of memory.

Dynamic Memory Allocation in C page 6

Conceptual View of Memory

s

Program Memory

main called and standard
functions

Data Memory

global program heap system stack

Memory

Dynamic Memory Allocation in C page 7

Dynamically Allocated Mem. in C

 Four memory management functions are used with
dynamic memory in the C language.
 malloc, calloc, and realloc are used for memory allocation.
 free is used to return allocated memory to the system when

it is no longer needed.

 All the memory management functions are found in
the standard library header file <stdlib.h>.

memory management

malloc calloc realloc free

Dynamic Memory Allocation in C page 8

Memory Management Functions

 malloc
 Formal description:

// Allocates unused space for an object

// whose size in bytes is specified by size

// and whose value is unspecified, and

// returns a pointer to the beginning of the

// memory allocated. If the memory can’t be

// found, NULL is returned.

void *malloc(size_t size);

Dynamic Memory Allocation in C page 9

Memory Management Functions

 calloc
 Formal description:

// Allocates an array of size nelem with

// each element of size elsize, and returns

// a pointer to the beginning of the memory

// allocated. The space shall be initialized

// to all bits 0. If the memory can't be

// found, NULL is returned.

void *calloc(size_t nelem, size_t elsize);

Dynamic Memory Allocation in C page 10

Memory Management Functions

 malloc & calloc
 Seem confusing?

 Both descriptions basically say that you need to tell the
function how many bytes to allocate
 How you specify this to the two functions is different

 Then, if the function successfully finds the memory
 A pointer to the beginning of the block of memory is returned

 If unsuccessful
 NULL is returned

Dynamic Memory Allocation in C page 11

Dynamically Allocated Mem. in C

 An Example: Dynamically Allocated Arrays
 Sometimes you won’t know how big an array

you will need for a program until run-time
 So you dynamically allocated space for the array

 Using a pointer

 Consider the following program:
 Simply reads from a file of numbers
 Assume that the first integer in the file stores how

many integers are in the rest of the file
 What does the program do:

 reads in all the values into the dynamically allocated array
 and prints them out in reverse order

Dynamic Memory Allocation in C page 12

#include <stdio.h>
int main() {

int *p, size, i;
FILE *fp;
// Open the input file.
fp = fopen("input.txt", "r");
// First int read shows how many numbers
fscanf(fp, "%d", &size);

// Make memory and read numbers into array.
p = (int *)malloc(size*sizeof(int));
for (i = 0; i<size; i++)

fscanf(fp, "%d", &p[i]);

// Print out the array elements backwards.
for (i = size-1; i>=0; i--)

printf("%d\n", p[i]);

// Close the file and free memory.
free(p);
fclose(fp);
return 0;

}

Note the actual
parameter passed to
the malloc function.

We must specify the
total # of bytes we
need for the array.

This number is the
product of the number
of array elements and
the size (in bytes) of
each array element.

Dynamic Memory Allocation in C page 13

Dynamically Allocated Mem. in C

 An Example: Dynamically Allocated Arrays
 Using calloc instead of malloc

 It should be fairly easy to see how we can change the
above code to use calloc instead of malloc

 For this example, however, there is no need to
initialize the whole block of memory to 0
 Which is the benefit of calloc

 So there’s no obvious advantage of using calloc

 But when you want to initialize all the memory
locations to 0
 calloc is the clear function of choice as it takes care of

that for you

Dynamic Memory Allocation in C page 14

Dynamically Allocated Mem. in C

 Extra notes on pointers and dynamic arrays
 The return type of mallic is void*

 This means that the return type for malloc MUST be
casted
 To what?

 To the type of pointer that will be pointing to the allocated
memory

 What is the reason?
 malloc is used to allocate memory for all types of

structures
 If malloc only returned an int *, for example, then we

couldn’t use it to allocate space for a character array
 So malloc simply returns a memory location

 It doesn’t specify what is going to be stored in that memory

Dynamic Memory Allocation in C page 15

Dynamically Allocated Mem. in C

 Extra notes on pointers and dynamic arrays
 The return type of mallic is void*

 Thus, the programmer should cast the return value,
from malloc, to the type they want

 All this does is specify what size “chunks” the memory
should be broken down into

 Once we know what we are pointing to, we know how
many contiguous memory locations store a piece of
data of the array

Dynamic Memory Allocation in C page 16

Dynamically Allocated Mem. in C

 Extra notes on pointers and dynamic arrays
 The return type of mallic is void*

 Example:
 You want to create an array that is 800 bytes long
 How many cells are in that array?
 Well, it depends on what “size” each cell will be
 If you want an array of integers, which are 4 bytes each,

then you will have 200 cells (800 total bytes / 4 bytes)
 But if you want an array of doubles, which are 8 bytes each,

then you will have 100 cells (800 total bytes / 8 bytes)
 So again, when you malloc your space, you need to “cast”

that space to whatever type you want (int, float, double, etc)
 That then determines how many chunks (and what size) the

allocated memory is broken into

Dynamic Memory Allocation in C page 17

Dynamically Allocated Mem. in C

 Extra notes on pointers and dynamic arrays
 malloc can fail to find the needed memory

within the heap
 If this occurs, malloc returns NULL
 Good programming should check for this after each
malloc call

 Mind you, this should rarely happen
 But the potential is there if you do not free memory

when possible
 When you are done using a dynamic data structure

 Use the free function to free that memory!

Dynamic Memory Allocation in C page 18

Memory Management Functions

 realloc
 What if your dynamically allocated array gets

filled?
 And now you want to “extend” it because more elements

need to be stored

 Based on what you know thus far, we could:
 Allocate new memory larger than the old memory
 Copy over all the values from the old memory to the new
 Free the old memory
 And now we can add new values to the new memory

 realloc is a function that does all this for us!

Dynamic Memory Allocation in C page 19

Memory Management Functions

 realloc
 void *realloc(void *ptr, size_t size);

 Description for IEEE standards web page:
 The realloc() function shall change the size of the memory

object pointed to by ptr to the size specified by size. The contents
of the object shall remain unchanged up to the lesser of the new
and old sizes. If the new size of the memory object would require
movement of the object, the space for the previous instantiation of
the object is freed. If the new size is larger, the contents of the
newly allocated portion of the object are unspecified. If size is 0
and ptr is not a null pointer, the object pointed to is freed. If the
space cannot be allocated, the object shall remain unchanged.
 Basically describes the various contingencies of what can

possibly happen in atypical situations

Dynamic Memory Allocation in C page 20

#include <stdio.h>
#include <time.h>

#define EXTRA 10

int main() {
int numVals;
srand(time(0));
printf("How many random numbers do you want?\n");
scanf("%d", &numVals);
int* values = (int*)malloc(numVals*sizeof(int));
int i;
for (i=0; i<numVals; i++)

values[i] = rand()%100;
for (i=0; i<numVals; i++)

printf("%d ", values[i]);
printf("\n");
values = (int*)realloc(values,(numVals+EXTRA)*sizeof(int));
for (i=0; i<EXTRA; i++)

values[i+numVals] = rand()%100;
numVals += EXTRA;
for (i=0; i<numVals; i++)

printf("%d ", values[i]);
printf("\n");
free(values);
return 0;

}

realloc example

Now let’s just say that for
some crazy reason, we
now want 10 extra
random numbers

Dynamic Memory Allocation in C page 21

Brief Interlude: Human Stupidity

Dynamic Memory Allocation in C page 22

Dynamically Allocated Mem. in C

 How to create a dynamically allocated array
inside a function
 Main idea is the same as if you did this in main
 BUT, you MUST return a pointer to the newly

created array
 Otherwise you won’t have access to the memory

Dynamic Memory Allocation in C page 23

Dynamically Allocated Mem. in C

 How to create a dynamically allocated array
inside a function
 Example of function:

int* readArray(FILE* fp, int size) {

int* p = (int *)malloc(size*sizeof(int));
for (i = 0; i<size; i++)

fscanf(fp, "%d", &p[i]);
return p;

}

Dynamic Memory Allocation in C page 24

Dynamically Allocated Mem. in C

 How to create a dynamically allocated array
inside a function
 Here’s how we call this function from main:

 What’s going on:
 Array is created while readArray is running
 A pointer to the beginning of the array is returned
 numbers (from main) is set to point to the newly

allocated memory

fp = fopen("input.txt", "r");
fscanf(fp, "%d", &size);
int* numbers = readArray(fp, size);

Dynamic Memory Allocation in C page 25

Dynamically Allocated Mem. in C

 How to create a dynamically allocated
structure from a function
 We will create the following struct and return a

pointer to it from a function:

 The following function creates a random struct
integer, dynamically, and returns a pointer to it

struct integer {
int* digits;
int size;

};

Dynamic Memory Allocation in C page 26

Dynamically Allocated Mem. in C

struct integer* createRandBigInt(int numDigits) {

struct integer* temp;
temp = (struct integer*)malloc(sizeof(struct integer));

temp->digits = (int*)malloc(numDigits*sizeof(int));
temp->size = numDigits;

temp->digits[numDigits-1] = 1 + rand()%9;

int i;
for (i=0; i<numDigits-1; i++)

temp->digits[i] = rand()%10;

return temp;
}

Dynamic Memory Allocation in C page 27

Dynamically Allocated Mem. in C

 How to create a dynamically allocated
structure from a function
 Note that there were TWO separate mallocs:
 The first malloc allocates space for the struct

itself
 This space is ONLY enough for one integer pointer

(small amount of space) and one actual integer
 The second malloc allocates space for the

integer array within the struct
 Which is potentially a large amount of space

 Depends on the variable numDigits

Dynamic Memory Allocation in C page 28

Dynamically Allocated Mem. in C

 How to create a dynamically allocated array of
structs from a function
 We will create the following struct and return a

pointer to it from a function:
 Works very, very similar to allocating an int array

dynamically
 Only difference is that instead of using int, you use the
struct

 We use the following struct for this example:
struct point {

int x;
int y;

};

Dynamic Memory Allocation in C page 29

Dynamically Allocated Mem. in C

struct point* createRandPoints(int size, int maxVal) {

struct point* temp;
temp = (struct point*)malloc(size*sizeof(struct point));

int i;
for (i=0; i<size; i++) {

temp[i].x = 1 + rand()%maxVal;
temp[i].y = 1 + rand()%maxVal;

}

return temp;
}

This function creates an array of struct point,
dynamically, fills it with random points, and returns a
pointer to the front of the array:

Dynamic Memory Allocation in C page 30

Dynamically Allocated Mem. in C

 How to create a dynamically allocated array of
structs from a function
 Note that we only have one malloc

 For the array itself

 This allocates all the space we need in one step
 Once space is allocated, we treat each array

location as an individual struct
 Use “.” to access its components

Dynamic Memory Allocation in C page 31

Dynamically Allocated Mem. in C

 How to create a dynamically allocated array of
pointers to structs
 Effectively, we accomplish the same general task

as the previous example
 This time, however, our array elements will only

store a POINTER to the struct instead of the
struct itself
 We use the same struct for this example:

struct point {
int x;
int y;

};

Dynamic Memory Allocation in C page 32

Dynamically Allocated Mem. in C

 How to create a dynamically allocated array of
pointers to structs

struct point** createRandPoints(int size, int maxVal) {

struct point** temp;
temp = (struct point**)malloc(size*sizeof(struct point*));

int i;
for (i=0; i<size; i++) {

temp[i] = (struct point*)malloc(sizeof(struct point));

temp[i]->x = 1 + rand()%maxVal;
temp[i]->y = 1 + rand()%maxVal;

}

return temp;
}

Dynamic Memory Allocation in C page 33

Dynamically Allocated Mem. in C

 How to create a dynamically allocated array of
pointers to structs
 Notice the double pointer

 The first pointer is for the array
 It refers to the array of pointers that we are making

 The second pointers is for the contents of each array
element

 Notice we have two allocations
 The first allocation is for the array of pointers
 For each array element, we must allocate space for the

individual struct that is being pointed to

 Notice the use of “->” since temp[i] is a pointer

Dynamic Memory Allocation in C page 34

Dynamically Allocated Mem. in C

WASN’T
THAT
FUN!

Dynamic Memory Allocation in C page 35

Daily Demotivator

Computer Science Department
University of Central Florida

Dynamic Memory
Allocation in C

COP 3502 – Computer Science I

	Dynamic Memory Allocation in C
	Dynamically Allocated Mem. in C
	Dynamically Allocated Mem. in C
	Dynamically Allocated Mem. in C
	Dynamically Allocated Mem. in C
	Conceptual View of Memory
	Dynamically Allocated Mem. in C
	Memory Management Functions
	Memory Management Functions
	Memory Management Functions
	Dynamically Allocated Mem. in C
	Slide Number 12
	Dynamically Allocated Mem. in C
	Dynamically Allocated Mem. in C
	Dynamically Allocated Mem. in C
	Dynamically Allocated Mem. in C
	Dynamically Allocated Mem. in C
	Memory Management Functions
	Memory Management Functions
	Slide Number 20
	Brief Interlude: Human Stupidity
	Dynamically Allocated Mem. in C
	Dynamically Allocated Mem. in C
	Dynamically Allocated Mem. in C
	Dynamically Allocated Mem. in C
	Dynamically Allocated Mem. in C
	Dynamically Allocated Mem. in C
	Dynamically Allocated Mem. in C
	Dynamically Allocated Mem. in C
	Dynamically Allocated Mem. in C
	Dynamically Allocated Mem. in C
	Dynamically Allocated Mem. in C
	Dynamically Allocated Mem. in C
	Dynamically Allocated Mem. in C
	Daily Demotivator
	Dynamic Memory Allocation in C

