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Insertion Revisited
 AVL Trees:  Insertion

 Let’s take another look at insertion into AVL Trees
 Hopefully this will be a bit easier than previous 

slides
 Assuming you only have two nodes in your tree,
 what are the two possible trees you may have?
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Insertion Revisited
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 Given these two trees, if we want to create an 
imbalance, where must we insert?

 Clearly, we must insert at the lower of the 2 nodes
 This will create a scenario where the left subtree has a 

height that is 2 greater than the right subtree
 Or the opposite for the other tree depicted

 Now, from these two trees, draw all FOUR possible 
trees that can be created by inserting a new node
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Insertion Revisited
 AVL Trees:  Insertion

 Here are all four unbalanced trees that we can 
make from three nodes:

 Now, label these nodes with the labels A, B, and C
 Where A is the smallest of the three nodes, B is the middle 

node, and C is the largest.
 The inorder traversal of each tree should be A, B, C
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Insertion Revisited
 AVL Trees:  Insertion

 Here are all four trees with the node lables in their 
inorder listing:

 Any time an imbalance occurs, it is localized to three 
nodes and their four subtrees
 These are the four possibilities
 Now we add in the depiction of the four subtrees of A, B, and C
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Insertion Revisited
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 Here are all four trees with the node lables in their 
inorder listing with subtrees in their inorder listing:

 We denote the four subtrees as T0, T1, T2, and T3

 And they are listed in their inorder listing
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Insertion Revisited
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 So what is the purpose of all this?
 We said this method is supposedly MUCH easier 

than dealing with the various rotations of the tree
 So we’ve done all this labeling

 Finding nodes ‘A’, ‘B’, and ‘C’ and labeling them as such

 How they heck does this help us???

 Here ya go…
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Insertion Revisited
 AVL Trees:  Insertion

 Part 1:  Once an insertion causes an imbalance, 
find and label the nodes ‘A’, ‘B’, and ‘C’

 Part 2:  Once the nodes are labeled, no matter what 
structural imbalance occurred, they can all be fixed 
the same way:

 Simply restructure those three nodes, and their four 
respective subtrees, as shown above, and the imbalance 
will be corrected!
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Insertion Revisited
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 Can be fixed by restructuring into this:
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All 4 of these trees:
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Brief Interlude:  FAIL Picture
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WASN’T
THAT

MOMENTOUS!
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Daily Demotivator
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