
Computer Science Department
University of Central Florida

AVL Trees:
Deletion

COP 3502 – Computer Science I

AVL Trees: Deletion page 2

Insertion Revisited
 AVL Trees: Insertion

 Let’s take another look at insertion into AVL Trees
 Hopefully this will be a bit easier than previous

slides
 Assuming you only have two nodes in your tree,
 what are the two possible trees you may have?

AVL Trees: Deletion page 3

Insertion Revisited
 AVL Trees: Insertion

 Given these two trees, if we want to create an
imbalance, where must we insert?

 Clearly, we must insert at the lower of the 2 nodes
 This will create a scenario where the left subtree has a

height that is 2 greater than the right subtree
 Or the opposite for the other tree depicted

 Now, from these two trees, draw all FOUR possible
trees that can be created by inserting a new node

AVL Trees: Deletion page 4

Insertion Revisited
 AVL Trees: Insertion

 Here are all four unbalanced trees that we can
make from three nodes:

 Now, label these nodes with the labels A, B, and C
 Where A is the smallest of the three nodes, B is the middle

node, and C is the largest.
 The inorder traversal of each tree should be A, B, C

AVL Trees: Deletion page 5

Insertion Revisited
 AVL Trees: Insertion

 Here are all four trees with the node lables in their
inorder listing:

 Any time an imbalance occurs, it is localized to three
nodes and their four subtrees
 These are the four possibilities
 Now we add in the depiction of the four subtrees of A, B, and C

A

B

C

B

C

A

A A

B

BC

C

AVL Trees: Deletion page 6

Insertion Revisited
 AVL Trees: Insertion

 Here are all four trees with the node lables in their
inorder listing with subtrees in their inorder listing:

 We denote the four subtrees as T0, T1, T2, and T3

 And they are listed in their inorder listing

A

B

C

B

C

A

A A

B

BC

C
T2

T3

T0 T1 T1 T2 T2 T3T1 T2

T0

T3 T0 T0

T1T3

AVL Trees: Deletion page 7

Insertion Revisited
 AVL Trees: Insertion

 So what is the purpose of all this?
 We said this method is supposedly MUCH easier

than dealing with the various rotations of the tree
 So we’ve done all this labeling

 Finding nodes ‘A’, ‘B’, and ‘C’ and labeling them as such

 How they heck does this help us???

 Here ya go…

AVL Trees: Deletion page 8

Insertion Revisited
 AVL Trees: Insertion

 Part 1: Once an insertion causes an imbalance,
find and label the nodes ‘A’, ‘B’, and ‘C’

 Part 2: Once the nodes are labeled, no matter what
structural imbalance occurred, they can all be fixed
the same way:

 Simply restructure those three nodes, and their four
respective subtrees, as shown above, and the imbalance
will be corrected!

A

B

C

T2 T3T0 T1

AVL Trees: Deletion page 9

Insertion Revisited
 AVL Trees: Insertion

 Can be fixed by restructuring into this:

A

B

C

T2 T3T0 T1

A

B

C

B

C

A

A A

B

BC

C
T2

T3

T0 T1 T1 T2 T2 T3T1 T2

T0

T3 T0 T0

T1T3

All 4 of these trees:

AVL Trees: Deletion page 10

Brief Interlude: FAIL Picture

AVL Trees: Deletion page 11

AVL Trees: Deletion

WASN’T
THAT

MOMENTOUS!

AVL Trees: Deletion page 12

Daily Demotivator

Computer Science Department
University of Central Florida

AVL Trees:
Deletion

COP 3502 – Computer Science I

	AVL Trees:�Deletion
	Insertion Revisited
	Insertion Revisited
	Insertion Revisited
	Insertion Revisited
	Insertion Revisited
	Insertion Revisited
	Insertion Revisited
	Insertion Revisited
	Brief Interlude: FAIL Picture
	AVL Trees: Deletion
	Daily Demotivator
	AVL Trees:�Deletion

