AVL Trees: Deletion

Computer Science Department University of Central Florida

COP 3502 - Computer Science I

Insertion Revisited

- AVL Trees: Insertion
- Let's take another look at insertion into AVL Trees
- Hopefully this will be a bit easier than previous slides
- Assuming you only have two nodes in your tree,
- what are the two possible trees you may have?

Insertion Revisited

- AVL Trees: Insertion

- Given these two trees, if we want to create an imbalance, where must we insert?

- Clearly, we must insert at the lower of the 2 nodes
- This will create a scenario where the left subtree has a height that is 2 greater than the right subtree
- Or the opposite for the other tree depicted
- Now, from these two trees, draw all FOUR possible trees that can be created by inserting a new node

Insertion Revisited

- AVL Trees: Insertion

- Here are all four unbalanced trees that we can make from three nodes:

- Now, label these nodes with the labels A, B, and C
- Where A is the smallest of the three nodes, B is the middle node, and C is the largest.
- The inorder traversal of each tree should be A, B, C

Insertion Revisited

- AVL Trees: Insertion

- Here are all four trees with the node lables in their inorder listing:

- Any time an imbalance occurs, it is localized to three nodes and their four subtrees
- These are the four possibilities
- Now we add in the depiction of the four subtrees of A, B, and C

Insertion Revisited

- AVL Trees: Insertion

- Here are all four trees with the node lables in their inorder listing with subtrees in their inorder listing:

- We denote the four subtrees as T_{0}, T_{1}, T_{2}, and T_{3}
- And they are listed in their inorder listing

Insertion Revisited

- AVL Trees: Insertion
- So what is the purpose of all this?
- We said this method is supposedly MUCH easier than dealing with the various rotations of the tree
- So we've done all this labeling
- Finding nodes ' A ', ' B ', and ' C ' and labeling them as such
- How they heck does this help us???
- Here ya go...

Insertion Revisited

- AVL Trees: Insertion
- Part 1: Once an insertion causes an imbalance, find and label the nodes ' A ', ' B ', and ' C '
- Part 2: Once the nodes are labeled, no matter what structural imbalance occurred, they can all be fixed the same way:

- Simply restructure those three nodes, and their four respective subtrees, as shown above, and the imbalance will be corrected!

Insertion Revisited

- AVL Trees: Insertion

All 4 of these trees:

- Can be fixed by restructuring into this:

Brief Interlude: FAIL Picture

AVL Trees: Deletion

WASN'T

THAT

 MOMENTOUS!
Daily Demotivator

AVL Trees: Deletion

Computer Science Department University of Central Florida

COP 3502 - Computer Science I

