
Computer Science Department
University of Central Florida

Hash Tables

COP 3502 – Computer Science I

Hash Tables page 2

Terminology

 Table
 An abstract data type that stores & retrieves

records according to their search key values

 Record
 Each individual row in the table
 Example:

 A database of student records
 So each record will have a pid, first name, last name,

SSN, address, phone, email, etc.

Hash Tables page 3

Record Example

9903030

0056789

0012345
0033333

tom

david

andy
betty

73

56.8

81.5
90

sid (key) name score

9908080 bill 49

...

Consider this problem. We want to store 1,000
student records and search them by student id.

...

This is an
example of a
table.

Each individual
row is a record.

Hash Tables page 4

Motivation

 Problem:
 Given this table of records
 We need to be able to:

 Add new records
 Delete records
 Search for records

 What’s the most efficient way of doing this?

Hash Tables page 5

Motivation

 Problem:
 What’s the most efficient way of doing this?
 Use an array to store the records, in unsorted order

 Running time:
 Adding a record:

 O(1) since we simply add at the end of the unsorted array
 Deleting a record:

 Very slow, or O(n), since we have to search through the entire
array to find the desired record to delete

 We then have a “hole” in the array.
 We can quickly fill that hole by moving the last element into it,

which can happen in O(1) time.
 Search for a record:

 Very slow, or O(n), since we search through the entire table

Hash Tables page 6

Motivation

 Problem:
 What’s the most efficient way of doing this?
 Use an array to store the records, in sorted order

 Running time:
 Adding a record:

 Must insert at correct position
 And then ALL other records, after insertion spot, must be moved
 Very slow, or O(n)

 Deleting a record:
 Must find the record to delete, O(n)
 Must fill the “hole”, which means moving all other items, O(n)

 Search for a record:
 Binary search!
 Fast, or O(logn)

Hash Tables page 7

Motivation

 Problem:
 What’s the most efficient way of doing this?
 Use a binary search tree to store the records

 Running time:
 Adding a record:

 Inserting into proper position in BST
 Fast, or O(logn)

 Deleting a record:
 Must find correct position to delete
 Fast, or O(logn)

 Search for a record:
 Also Fast, or O(logn)

Hash Tables page 8

Motivation

 Problem:
 What’s the most efficient way of doing this?
 Use a binary search tree to store the records

 BSTs seem to be the best solution to this
 But there’s something that is WAAAAAY faster

 Adding, Deleting, and Searching are all O(1): CONSTANT time
 A very simple, naive solution that you could come up with

before even taking this class
 Just use an array! But a special type of an array.
 Specially, use an array that is SOOOOO large that every

record has its own, exclusive cell in the array
 Often called a Direct Access Table

Hash Tables page 9

Direct Access Table

:
334561894

:
123456789

0
:

:
betty

:
andy

:

:
90
:

81.5
:

name score

589224751 david 56.8

:
990847852

:
:

:
bill

:
:

:
49
:
:

999999999

Assume we stored records
based on a social security #.

One way is to store the records
in a huge array

index 0..999999999

The index into array is simply
an individuals SSN.

So this is VERY FAST

Adding, Deleting, and
Searching: O(1)

Hash Tables page 10

Motivation

 Problem:
 What’s the most efficient way of doing this?
 Use a Direct Access Table

 So a Direct Access Table is WAAAAAY fast
 But what is the obvious, HUUUGE problem???
 Let’s say we want to store 1000 students based on SSN
 SSN is 9 digits

 Assume the largest SSN is 999-99-9999
 So we need an array that is 1 BILLION in size
 So, yeah, this direct access table is O(1) in speed
 But it is O(stupid) in size and memory

 HUGE overkill to have an array of 1 billion to store 1000 records

Hash Tables page 11

Motivation

 We need a better solution!
 We want constant add/delete/search time
 And a reasonably sized array
 What we ideally want:

 Let’s say we want to store 1000 students
 So ideally, we only want an array of size 1000

 So we don’t waste space
 But we still want the “direct access” that results in O(1)

lookup time
 How can we do this?

 Remembering that it was the SIZE of the array that allowed for
direct access in the first place

Hash Tables page 12

Motivation

 What we ideally want:
 This array is size 1000

 And we will place students into
this array based on their SSN.

 So we need a way of mapping
a SSN to an index

 Example:
 We want SSN: 527-44-7521 to

somehow refer to index 368.

 If we can do that, then we
accomplish our goal

:
368

:
150

0
:

:
527-44-7521

:
842-33-5821

:

:
Betty

:
Andy

:

527 452-85-6829 David

:
884

:
:

:
651-54-3218

:
:

:
Bill

:
:

999

Hash Tables page 13

Magic Address Calculator

 Solution:
 Let’s build a make-believe function:

 the “magic address calculator”
 The input to this function is the “key” (ie. SSN)
 The function converts this SSN into an index into the

reasonably sized array
 Ideally, each SSN will “map” into its own index in the array

 So this is still in constant time!
 Assuming the “magic address calculator” does the

conversion in constant time …which it does!

 And we are using a reasonably sized array!
 This is the concept of a hash table.

Hash Tables page 14

Terminology

 Hash table
 An array of table items, where the index is

calculated by a hash function
 Searching in a hash table:

 Let’s say you are searching for a record with key 4256
 To find an item in a hash table, you do NOT follow the

standard protocol of searching the entire table, record by
record, comparing the key you are looking for to the key
in each record.

 Rather, we use a hash function on the search key to
quickly calculate the index of the item
 The hash function converts the key into the correct index into

the table

Hash Tables page 15

Terminology

 Hash function
 A mathematical calculation that maps the search

key to an index in a hash table
 Should be fast to calculate

 Time for calculation should be O(1)
 Should distribute items evenly

 Hashing
 A way to access a table (array) in relatively

constant (quick) time
 Uses a hash function & collision resolution scheme

Hash Tables page 16

Hash Example

 UCF System for storing student records
 Could store everyone’s records with name,

address, and telephone number using SSN as the
search key
 Could use entire SSN, but wastes too much space

 Again, SSN’s have 9 digits…that’s 1 BILLION different #’s to
account for

 But UCF has only 50,000 students...so in an array of size 1
BILLION, only 50,000 spots will be used

 EPIC WASTE!
 On a side note, there will be no “collisions”
 Each record will have its own, personal spot in the array based

on its key (phone number)

Hash Tables page 17

Hash Example

 UCF System for storing student records
 Could store everyone’s records with name,

address, and telephone number using SSN as the
search key
 Better to use last five digits of SSN number
 For example, instead of using HashTable [589475127] to

access that record, use HashTable[75127]
 Now you need an array of size 100,000

 Since we are using 5 digits
 The array can go from index 0 to index 99999

 So this is still twice the # of UCF students
 BUT, much better than an array of size 1 BILLION

Hash Tables page 18

Hash Example

 UCF System for storing student records
 Could store everyone’s records with name,

address, and telephone number using SSN as the
search key
 Better to use last five digits of SSN number
 However, there is a chance of collisions

 SSN # 589475127 and SSN # 428475127 have the same last
five digits

 So they will end up “mapping” to the same index in the array
 This is called a “collision”

 That is CLEARLY a problem.
 Can’t store two items in one index of the array

 So, we will need to know how to handle collisions
 Will discuss in a bit

Hash Tables page 19

Hash Function

 A hash function is written h(x)=i
 h is the name of the hash function
 x is the record search key

 Such as the SSN in our example

 i is the output of the hash function
 which refers to an index in they array (hash table)

 Let’s say we are trying to add to a hash table
 Once i is calculated, we can then add the record at

HashTable[i]

Hash Tables page 20

Hash Function

 A hash function is written h(x)=i
 In the UCF student example,

h(589475127)=75127
 So now we can take the record (name, address,

phone, etc.) of the student with SSN 589475127
 and we can store that record at HashTable[75127]
 So this mock UCF hash function simple takes a

phone number and keeps the last five digits
 Hash functions can be as easy or as difficult as you

want

Hash Tables page 21

Example Hash Functions

 Three simple hash functions for integers
1. Selecting digits
2. Folding
3. Modulo arithmetic

 Again, these are just examples!
 Remember the goal here

 Given some key (ie. SSN, student ID, phone #, etc)
 We want to make an “smaller” version of that key

 Because when a key is smaller, that means the size of the
array needed can also be smaller

 Use this new key to index the record

Hash Tables page 22

3 Simple Hash Functions

 Selecting digits hash function
 Instead of using the whole integer, only select

several digits
 For example, if you have the SS#123-45-6789, just

use the first 3 digits
 h(123456789)=123
 This is like the example we already did

 Fast & easy to calculate, but usually does not
distribute randomly
 The first three numbers of a social security number

are based on location, so people of the same state
usually have the same SS#

Hash Tables page 23

3 Simple Hash Functions

 Folding hash function
 Add the digits of the integer together

 For example, if you have the SS#123-45-6789, add all
the digits together

 h(123456789)=1+2+3+4+5+6+7+8+9=45 with hash
table index range 0 < h(search key) < 81

 Can add in different ways for hash tables of
different sizes
 h(123456789)=123+456+789=1368 with hash table

index range 0 < h(search key) < 2997

Hash Tables page 24

3 Simple Hash Functions

 Modulo arithmetic hash function
 Using modulus as a hash function

 h(x) = x mod tableSize

 Using a prime number as tableSize reduces
collisions
 For tableSize = 31,

h(123456789) = 123456789 mod 31 = 2
with hash table index range 0 < h(search key) < 30

Hash Tables page 25

Hash Functions

 Hash functions only need to be designed to
operate on integers
 Although objects such as strings can be used as a

search key, they can be easily converted into an
integer value
 Then apply hash function to the integer value

Hash Tables page 26

Convert String to Integer

 Ways to convert a string to an integer
1. Assign A to Z the numbers 0 to 25, and add the

integers together
2. Use the ASCII or Unicode integer value for each

character, and add the integers together
3. Use the binary number for the ASCII or Unicode

integer value for each character, and
concatenate the binary numbers together

Hash Tables page 27

Convert String to Integer

 Examples of converting a string to an integer
1. “ABC” would be 0 + 1 + 2 = 3
2. “ABC” would be 65 + 66 + 67 = 198
3. “ABC” would be 01000001 + 01000010 +

01000011 = 010000010100001001000011 =
4,276,803

Hash Tables page 28

Terminology

 Perfect hash function
 Ideal situation where hash function maps each

search key into a different location in the hash
table
 Telephone numbers would all map to different indexes

 Collision
 When a hash function maps two or more search

keys into the same location in the hash table
 h(key1) = h(key2), so have the same index value

Hash Tables page 29

Example Collision

 Need to store the student records of ICS 211
students based on student ID
 Student ID has 8 digits, so need array of size

100,000,000
 This is a waste of space, so instead use an

array of size 31, with hash function h(x) = x mod
31

 h(12345678)=h(26508090)=21 is an example of
a collision
 Both should be stored at table[21]

Hash Tables page 30

Brief Interlude: FAIL Picture

Hash Tables page 31

UCF Weekly Bike Fail

Courtesy of
Unika Cole

Hash Tables page 32

Collision Resolution

 In case of a collision, a collision resolution
scheme must be implemented
 Assigns the search keys with the same hash

function to different locations in the hash table
 Whenever possible, items should be placed evenly in the

hash table in order to avoid these collisions

 Or we use another method called Bucket Hashing
or Separate Chaining

Hash Tables page 33

Resolving Collisions

 Two main approaches to collision resolution
1. Open addressing
2. Restructure the hash table

 Bucket Hashing
 Separate Chaining

Hash Tables page 34

Open Addressing

 Open addressing
 Probe (search) for open locations in the hash

table
 Probe sequence

 The sequence of locations that are examined
for a possible open location to put the next
item

Hash Tables page 35

Open Addressing

 Three types of probing
1. Linear probing
2. Quadratic probing
3. Double hashing

Hash Tables page 36

Open Addressing

 Linear probing
 In the case of a collision, keep going to the

next hash table location until find an open
location
 In other words, if table[i] is occupied, check

table[i+1], table[i+2], table[i+3], …
 Need 3 states for each hash table location:

empty, occupied, deleted

 Common problem
 Items tend to cluster together in the hash table

Hash Tables page 37

Open Addressing

 Linear probing example
 Table size = 31
 Hash function = key mod 31

 h(1234) = 25 table[25] = 1234
 h(4055) = 25+1 table[26] = 4055
 h(3962) = 25+2 table[27] = 3962
 h(5853) = 25+3 table[28] = 5853
 h(1766) = 30 table[30] = 1766
 h(1270) = 30+1 table[0] = 1270 (wraps around)
 All other table entries are empty

Hash Tables page 38

Open Addressing

 Empty, occupied, & deleted states
 Assume we delete record #3962
 This state must be changed to occupied (not

empty), so we can still locate record #5853
 h(1234) = 25 table[25] = 1234
 h(4055) = 25 table[26] = 4055
 delete(3962) table[27] = “deleted”
 h(5853) = 25 table[28] = 5853
 no record added table[29] = “empty”
 h(1766) = 30 table[30] = 1766
 h(1270) = 30 table[0] = 1270 (wraps around)

Hash Tables page 39

Open Addressing

 Quadratic probing
 Instead of checking the next location

sequentially, check the next location based on
a sequence of squares
 In other words, if table[i] is occupied, check

table[i+12], table[i+22], table[i+32], …
 Still have clustering (called “secondary clustering”),

but this method is not as problematic as linear
probing

Hash Tables page 40

Open Addressing

 Quadratic probing example
 Table size = 31
 Hash function = key mod 31

 h(1234) = 25 table[25] = 1234
 h(4055) = 25+12 table[26] = 4055
 h(3962) = 25+22 table[29] = 3962
 h(5853) = 25+32 table[3] = 5853 (wraps around)
 h(1766) = 30 table[30] = 1766
 h(1270) = 30+12 table[0] = 1270 (wraps around)
 All other table entries are empty

Hash Tables page 41

Open Addressing

 Double hashing
 Use two hash functions, where second hash

function determines the step size to next hash
table index

 Some restrictions
 h2(searchKey) != 0 (step size should not be zero)
 h2 != h1 (avoids clustering)

Hash Tables page 42

Open Addressing

 Double hashing example
 Table size = 31
 Hash function #1 = key mod 31
 Hash function #2 = 23 – (key mod 23)

 h1(1234) = 25 table[25] = 1234
 h1(4055) = 25, h2(4055) = 16 (+25),table[10] = 4055
 h1(3962) = 25, h2(3962) = 17 (+25), table[11] = 3962
 h1(5853) = 25, h2(5853) = 12 (+25), table[6] = 5853
 h1(1766) = 30 table[30] = 1766
 h1(1270) = 30, h2(1270) = 18 (+30), table[17] = 1270
 All other table entries are empty

Hash Tables page 43

Open Addressing

 Double hashing example
 h1(key) = key mod 13
 h2(key) = 11 – (key mod 11)

 If key = 30, probe sequence would be 4, 7, 10, 0, 3,
6, 9, 12, 2, 5, 8, 11, 1 (step 3 each time)

 If key = 50, probe sequence would be 11, 3, 8, 0, 5,
10, 2, 7, 12, 4, 9, 1, 6 (step 5 each time)

Hash Tables page 44

Open Addressing

 If table size is prime, then probe sequence
will visit all table locations

 With open addressing, increasing table size
will reduce collisions
 When increasing the size, the hash function

needs to be reapplied to every item in the old
hash table to place it in the new hash table

Hash Tables page 45

Restructuring the Hash Table

 How is a hash table restructured for
collision resolution?
 The structure of the hash table is changed so

that the same index location can store multiple
items

 Two ways to restructure a hash table for
collision resolution

1. Bucket hashing
2. Separate chaining

Hash Tables page 46

Restructuring the Hash Table

 Bucket hashing
 A hash table that has an array at each location

table[i], so that items of the same hash index
are stored here

 Choosing the size of the bucket is problematic
 If too small, will have collisions
 If too big, will waste space

Hash Tables page 47

Restructuring the Hash Table

 Bucket hashing example
 Table size = 31
 Hash function = key mod 31

 h(1234) = 25 table[25][0] = 1234
 h(4055) = 25 table[25][1] = 4055
 h(3962) = 25 table[25][2] = 3962
 h(5853) = 25 table[25][3] = 5853
 h(1766) = 30 table[30][0] = 1766
 h(1270) = 30 table[30][1] = 1270
 All other table entries are empty

Hash Tables page 48

Restructuring the Hash Table

 Separate chaining
 A hash table that has linked list (a chain) at

each location table[i], so that items of the
same hash index are stored here

 Size of the table is dynamic
 Less problematic than static bucket implementation

Hash Tables page 49

Restructuring the Hash Table

 Separate chaining example
 Table size = 31
 Hash function = key mod 31

 h(1234) = 25, table[25]=>1234
 h(4055) = 25, table[25]=>4055=>1234
 h(3962) = 25, table[25]=>3962=>4055=>1234
 h(5853) = 25, table[25]=>5853=>3962=>4055=>1234
 h(1766) = 30, table[30]=>1766
 h(1270) = 30, table[30]=>1270=>1766

Hash Tables page 50

Hash Tables

 Summary:
 We use a hash table to accomplish O(1) access

time into a table
 While keeping the table to a reasonable size
 Use a hash function to map the record “keys” into an

index in the hash table
 Collisions are bound to happen and are taken care of

using several possible methods

 Comparison of Implementations (slowest to
quickest)
 Linear probing, quadratic probing, double hashing,

separate chaining

Hash Tables page 51

Hash Tables

WASN’T
THAT

MOMENTOUS!

Hash Tables page 52

Daily Demotivator

Computer Science Department
University of Central Florida

Hash Tables

COP 3502 – Computer Science I

	Hash Tables
	Terminology
	Record Example
	Motivation
	Motivation
	Motivation
	Motivation
	Motivation
	Direct Access Table
	Motivation
	Motivation
	Motivation
	Magic Address Calculator
	Terminology
	Terminology
	Hash Example
	Hash Example
	Hash Example
	Hash Function
	Hash Function
	Example Hash Functions
	3 Simple Hash Functions
	3 Simple Hash Functions
	3 Simple Hash Functions
	Hash Functions
	Convert String to Integer
	Convert String to Integer
	Terminology
	Example Collision
	Brief Interlude: FAIL Picture
	UCF Weekly Bike Fail
	Collision Resolution
	Resolving Collisions
	Open Addressing
	Open Addressing
	Open Addressing
	Open Addressing
	Open Addressing
	Open Addressing
	Open Addressing
	Open Addressing
	Open Addressing
	Open Addressing
	Open Addressing
	Restructuring the Hash Table
	Restructuring the Hash Table
	Restructuring the Hash Table
	Restructuring the Hash Table
	Restructuring the Hash Table
	Hash Tables
	Hash Tables
	Daily Demotivator
	Hash Tables

