
Computer Science Department
University of Central Florida

Binary Heaps &
Priority Queues

COP 3502 – Computer Science I

Binary Heaps & Priority Queues page 2

Binary Heaps

 Heap:
 A heap is an Abstract Data Type

 Just like stacks and queues are ADTs
 Meaning, we will define certain behaviors that dictate

whether or not a certain data structure is a heap

 So what is a heap?
 More specifically, what does it do or how do they work?

 A heap looks similar to a tree
 But a heap has a specific property/invariant that each

node in the tree MUST follow

Binary Heaps & Priority Queues page 3

Binary Heaps

 Heap:
 In a heap, all values stored in the subtree of a

given node must be less than or equal to the
value stored in that node
 This is known as the heap property

And it is this
property that

makes a heap
a heap!

Binary Heaps & Priority Queues page 4

Binary Heaps

 Heap:
 In a heap, all values stored in the subtree of a

given node must be less than or equal to the
value stored in that node
 If B is a child of node A, then the value of node A must

be greater than or equal to the value of node B
 This is a called a Max-Heap

 Where the root stores the highest value of any given subtree

Binary Heaps & Priority Queues page 5

Binary Heaps

 Heap:
 Alternatively, if all values stored in the subtree of

a given node are greater than or equal to the
value stored in that node
 This is called a Min-Heap (where root is smallest value)

Binary Heaps & Priority Queues page 6

Binary Heaps

 Binary Heap:
 What we just described was a basic Heap
 Now for a heap to be Binary Heap, it must adhere

to one other property:
 The Shape Property:

 The heap must be a complete binary tree
 Meaning, all levels of the tree, except possibly the last

one, must be fully filled
 And if the last level is not complete, the nodes of the

level are filled from left to right
 ***And it just so happens that the previous pictures shown

were all examples of binary heaps

Binary Heaps & Priority Queues page 7

Binary Heaps

 Building a
Complete
Binary Tree:

When a complete
binary tree is built,

its first node must be
the root.

Root

Binary Heaps & Priority Queues page 8

Binary Heaps

 Building a
Complete
Binary Tree:

Left child
of the
root

The second node is
always the left child

of the root.

Binary Heaps & Priority Queues page 9

Binary Heaps

 Building a
Complete
Binary Tree:

Right child
of the

root

The third node is
always the right child

of the root.

Binary Heaps & Priority Queues page 10

Binary Heaps

 Building a
Complete
Binary Tree:

The next nodes
always fill the next
level from left-to-

right.

Binary Heaps & Priority Queues page 11

Binary Heaps

 Building a
Complete
Binary Tree:

The next nodes
always fill the next
level from left-to-

right.

Binary Heaps & Priority Queues page 12

Binary Heaps

 Building a
Complete
Binary Tree:

The next nodes
always fill the next
level from left-to-

right.

Binary Heaps & Priority Queues page 13

Binary Heaps

 Building a
Complete
Binary Tree:

The next nodes
always fill the next
level from left-to-

right.

Binary Heaps & Priority Queues page 14

Binary Heaps

 Building a
Complete
Binary Tree:

Binary Heaps & Priority Queues page 15

Binary Heaps

 Building a
Complete
Binary Tree:

Each node in a heap
contains a key that
can be compared to
other nodes' keys.

19

4222127

23

45

35

This is an example
of a MaxHeap

Binary Heaps & Priority Queues page 16

Binary Heaps

 Binary Heap:
 New nodes are always added at the lowest level

 And are inserted from left to right

 There is no particular relationship among the data
items in nodes on any given level
 Even if the nodes have the same parent
 Example: the right node does not necessarily have to

be larger than the left node (as in BSTs)

 The only ordering property for heaps is the one
already defined
 Root of any given subtree is either largest or smallest

element in that tree…either a max-heap or a min-heap

Binary Heaps & Priority Queues page 17

Binary Heaps

 Binary Heap:
 The tree never becomes unbalanced
 A heap is not a sorted structure

 But it can be regarded as partially ordered
 Since the minimum value is always at the root

 A given set of data can be formed into many
different heaps
 Depending on the order in which the data arrives

Binary Heaps & Priority Queues page 18

Binary Heaps

 Binary Heap:
 “Okay, great…whupdedoo”
 Yeah, we now know what a binary heap is
 But how does it help us?
 What is its purpose?

 Binary heaps are usually used to implement
another abstract data type:
 A priority queue

Binary Heaps & Priority Queues page 19

Binary Heaps

 Priority Queues:
 A priority queue is basically what it sounds like

 it is a queue
 Which means that we will have a line
 But the first person in line is not necessarily the first

person out of line
 Rather, the queuing order is based on a priority
 Meaning, if one person has a higher priority, that person

goes right to the front

 Examples:
 Emergency room:

 Higher priority injuries are taken first

Binary Heaps & Priority Queues page 20

Binary Heaps

 Priority Queues:
 The model:

 Requests are inserted in the order of arrival
 The request with the highest priority is processed first

 Meaning, it is removed from the queue
 Priority can be indicated by a number

 But you have to determine what has most priority
 Maybe your application results in smallest number having the

highest priority
 Maybe the largest number has the highest priority

 This really isn’t important and is an implementation detail

Binary Heaps & Priority Queues page 21

Binary Heaps

 Priority Queues:
 So how could we implement a priority queue?

 Sorted Linked List
 Higher priority items are ALWAYS at the front of the list
 Example: a check out line in a supermarket

 But people who are more important can cut in line
 Running Time:

 O(n) insertion time: you have to search through, potentially, n
nodes to find the correct spot (based on priority)

 O(1) deletion time (finding the node with the highest priority)
since the highest priority node is first node of the list

Binary Heaps & Priority Queues page 22

Binary Heaps

 Priority Queues:
 So how could we implement a priority queue?

 Unsorted Linked List
 Keep a list of elements as a queue
 To add an element, append it to the end
 To remove an element, search through all the elements for

the one with the highest priority
 Running Time:

 O(1) insertion time: you simple add to the end of the list
 O(n) deletion time: you have to, potentially, search through all

n nodes to find the correct node to delete

Binary Heaps & Priority Queues page 23

Binary Heaps

 Priority Queues:
 So how could we implement a priority queue?

 Correct Method: Binary Heap!
 We use a binary heap to implement a priority queue

 So we are using one abstract data type to implement another
abstract data type

 Running time ends up being O(logn) for both insertion
and deletion into a Heap

 FindMin (finding the minimum) ends up being O(1)
 cuz we just find (look at) the root, which is O(1)

 So now we look at how to maintain a heap/priority queue
 How to insert into and delete from a heap
 And how to build a heap

Binary Heaps & Priority Queues page 24

Brief Interlude: FAIL Picture

Binary Heaps & Priority Queues page 25

UCF Weekly Bike FAIL

Courtesy of
Thong Tran

Binary Heaps & Priority Queues page 26

UCF Weekly Bike FAIL

Courtesy of
MichaelCapobianco

Binary Heaps & Priority Queues page 27

Binary Heaps

 Adding Nodes to a Binary Heap
 Assume the existence of a current heap
 Remember:

 The binary heap MUST follow the Shape property
 The tree must be balanced

 Insertions will be made in the next available spot
 Meaning, at the last level
 and at the next spot, going from left to right

 But what will most likely happen when you do
this?
 The Heap property will NOT be maintained

Binary Heaps & Priority Queues page 28

 Adding Nodes to a Binary Heap

 Given this Binary Heap:
 And it is a Max-heap

 We now add a new node
 With data value 42

 We add at the last position
 But this voids the

Heap Property
 42 is greater than

both 27 and 35
 So we must fix this! 42

Binary Heaps

19

4222127

23

45

35

Binary Heaps & Priority Queues page 29

Binary Heaps

 Adding Nodes to a Binary Heap
 Percolate Up procedure

 In order to fix the out of place node, we must follow the
following “Percolate Up” procedure
 If the parent of the newly inserted node is less than the newly

inserted node (this is clearly for a “max heap”)
 Then SWAP them

 This counts as one “Percolate Up” step
 Continue this process until the new node finds the correct

spot
 Continue SWAPPING until the parent of the new node

has a value that is greater than the new node
 Or if the new node reaches all the way to the root
 This is now the new “home” for this node

Binary Heaps & Priority Queues page 30

 Adding Nodes to a Binary Heap

 Put the new node
in the next available spot.

 Push the new node
upward, swapping
with its parent until
the new node reaches
an acceptable location.

42

Binary Heaps

19

4222127

23

45

35

Binary Heaps & Priority Queues page 31

 Adding Nodes to a Binary Heap

 Put the new node
in the next available spot.

 Push the new node
upward, swapping
with its parent until
the new node reaches
an acceptable location.

19

4222142

23

45

35

27

Binary Heaps

Binary Heaps & Priority Queues page 32

19

4222135

23

45

42

27

 Adding Nodes to a Binary Heap

 Put the new node
in the next available spot.

 Push the new node
upward, swapping
with its parent until
the new node reaches
an acceptable location.

Binary Heaps

Binary Heaps & Priority Queues page 33

 Adding Nodes to a Binary Heap

 42 has now reached
an acceptable location

 Its parent (node 45) has
a value that is greater
than 42

 This process is called
Percolate Up

 Other books call it
Heapification Upward

 What is important
is how it works

19

4222135

23

45

42

27

Binary Heaps

Binary Heaps & Priority Queues page 34

Binary Heaps

 Adding Nodes to a Binary Heap
 Percolate Up procedure

 What is the Big-O running time of insertion into a heap?
 The actual insertion is simply O(1)

 We simply insert at the last position
 And you will see (in a bit) how we quick access to this position

 But when we do this,
 We need to fix the tree to maintain the Heap Property

 Percolate Up takes O(logn) time
 Why?
 Because the height of the tree is log n
 Worst case scenario is having to SWAP all the way to the root

 So the overall running time of an insertion is O(logn)

Binary Heaps & Priority Queues page 35

Binary Heaps

 Deleting Nodes from a Binary Heap
 We will write a function called deleteMin (or deleteMax)
 Which node will we ALWAYS be deleting?
 Remember:

 We are using a Heap to implement a priority queue!
 And in a priority queue, we always delete the first element
 The one with the highest priority

 So we will ALWAYS be deleting the ROOT of the
tree
 So this is quite easy!
 deleteMin (or deleteMax for a Max Heap) simply deletes

the root and returns its value to main

Binary Heaps & Priority Queues page 36

Binary Heaps

 Deleting Nodes from a Binary Heap
 We will write a function called deleteMin

 deleteMin simply deletes the root and returns its value to
main

 But what will happen when we delete the root?
 We will have a tree with no root!
 The root will be missing

 So clearly this needs to be fixed

Binary Heaps & Priority Queues page 37

Binary Heaps

 Deleting Nodes from a Binary Heap
 Fixing the tree after deleting the root:
1) Copy the last node of the tree into the position of the root
2) Then remove that last node (to avoid duplicates)

 Note: The new root is almost assuredly out of place
 Most likely, one, or both, of its children will have a greater

value than it
 If so:

3) Swap the new root node with the greater of its child nodes
 This is considered one “Percolate Down” step

 Continue this process until the “last node” ends up in a
spot where its children have values smaller than it
 Neither child can have a value greater than it

This process is
for a Max-heap

Binary Heaps & Priority Queues page 38

Binary Heaps

 Deleting Nodes from a Binary Heap

 Given the following Heap:
 We perform a delete
 Which means 45 will

get deleted

19

4222135

23

45

42

27

Binary Heaps & Priority Queues page 39

Binary Heaps

 Deleting Nodes from a Binary Heap

 Given the following Heap:
 We perform a delete
 Which means 45 will

get deleted

19

4222135

2342

27

Binary Heaps & Priority Queues page 40

Binary Heaps

 Deleting Nodes from a Binary Heap

 The last node now gets
moved to the root

 So 27 goes to the root

19

4222135

2342

27

Binary Heaps & Priority Queues page 41

Binary Heaps

 Deleting Nodes from a Binary Heap

 The last node now gets
moved to the root

 So 27 goes to the root
 27 is now out of place
 We must Percolate Down

19

4222135

23

27

42

Binary Heaps & Priority Queues page 42

19

4222135

23

27

42

Binary Heaps

 Deleting Nodes from a Binary Heap

 Percolate Down:
 Push the out-of-place

node downward,
 swapping with its

larger child
 until the out-of-place

node reaches an
acceptable location

Binary Heaps & Priority Queues page 43

 Deleting Nodes from a Binary Heap

 Percolate Down:
 Push the out-of-place

node downward,
 swapping with its

larger child
 until the out-of-place

node reaches an
acceptable location

19

4222135

23

42

27

Binary Heaps

Binary Heaps & Priority Queues page 44

19

4222127

23

42

35

 Deleting Nodes from a Binary Heap

 Percolate Down:
 Push the out-of-place

node downward,
 swapping with its

larger child
 until the out-of-place

node reaches an
acceptable location

Binary Heaps

Binary Heaps & Priority Queues page 45

 Deleting Nodes from a Binary Heap

 Percolate Down:
 27 has reached an

acceptable location
 Its lone child (19) has

a value that is less
than 27

 So we stop the
Percolate Down
procedure at
this point 19

4222127

23

42

35

Binary Heaps

Binary Heaps & Priority Queues page 46

Binary Heaps

 Deleting Nodes from a Binary Heap
 What is the Big-O running time of deletion from a heap?
 The actual deletion itself is O(1)

 cause the minimum value is at the root
 and we can delete the root of a tree in O(1) time

 But now we need to fix the tree
 Moving the last node to the root is an O(1) step
 But then we need to Percolate Down

 Percolate Down takes O(logn)
 Why?

 Because the height of the tree is log n
 And the worst case scenario is having to SWAP all the way to

the farthest leaf

 So the overall running time of a deletion is O(logn)

Binary Heaps & Priority Queues page 47

Daily Demotivator

Computer Science Department
University of Central Florida

Heaps &
Priority Queues

COP 3502 – Computer Science I

Binary Heaps & Priority Queues page 49

Binary Heaps

 Building a Heap from scratch (a Max heap)
 Given: an unsorted list of n values

 54, 87, 27, 67, 19, 31, 29, 18, 32, 56, 7, 12, 31
 How can we build a heap from these values?

 It is really just a series of “insertions”
 Simply insert the n elements into the heap in the order

that they arrive (in our case, from left to right)
 WHILE there are more elements:

1) Insert the next element
2) Percolate Up to a suitable position

 Once all elements are inserted, we have our heap

Binary Heaps & Priority Queues page 50

Binary Heaps

 Building a Heap from scratch (a Max heap)
 Given: an unsorted list of n values

 54, 87, 27, 67, 19, 31, 29, 18, 32, 56, 7, 12, 31
54 54

87

87

54

87

54 27

87

54 27

67

87

67 27

54

87

67 27

54 19

Binary Heaps & Priority Queues page 51

Binary Heaps

 Building a Heap from scratch (a Max heap)
 Given: an unsorted list of n values

 54, 87, 27, 67, 19, 31, 29, 18, 32, 56, 7, 12, 31

27

87

67

54 19

31

87

67

54 19 2731

Binary Heaps & Priority Queues page 52

Binary Heaps

 Building a Heap from scratch (a Max heap)
 Given: an unsorted list of n values

 54, 87, 27, 67, 19, 31, 29, 18, 32, 56, 7, 12, 31

18

31

87

67

54 19 27 29

31

87

67

54 19 27 29

32

Binary Heaps & Priority Queues page 53

Binary Heaps

 Building a Heap from scratch
 Running time:

 How long does it take to do one insertion?
 We just covered this!
 An insertion takes O(logn)

 As in the worst case, it has to Percolate all the way Up to root

 And we have n elements to insert
 Running time to make a heap from n elements is

O(nlogn)

Binary Heaps & Priority Queues page 54

Binary Heaps

 Building a Heap from scratch
 Can we do better than O(nlogn) time?

 Turns out that we can

 Start by arbitrarily placing your elements into a
complete binary tree

 Then, starting at the lowest level,
 Perform a Percolate Down (if necessary)
 So we work from the bottom and go up to the root
 Performing a Percolate Down at each node

 Only if necessary

 This function is known as Heapify

Binary Heaps & Priority Queues page 55

Binary Heaps

 Building a Heap from scratch
 Running time:

 Note:
 Realize that for any given complete tree, that is completely

filled, the lowest level has ½ of the total nodes in a tree
 In a complete tree of 31 nodes, the lowest level has 16 nodes

 And since they are already at the lowest level,
 Those 16 nodes will NOT need to Percolate Down

Binary Heaps & Priority Queues page 56

Binary Heaps

 Building a Heap from scratch

These nodes do
NOT have to
Percolate Down!

They are already
at the bottom
most level.

Binary Heaps & Priority Queues page 57

Binary Heaps

 Building a Heap from scratch
 Running time:

 Note:
 Realize that for any given complete tree, that is completely

filled, the lowest level has ½ of the total nodes in a tree
 In a complete tree of 31 nodes, the lowest level has 16 nodes

 And since they are already at the lowest level,
 Those 16 nodes will NOT need to Percolate Down

 The level above the 16 nodes has 8 nodes
 What can we say about those 8 nodes?
 Notice that, at MOST, those 8 nodes will have to Percolate

Down only one level

Binary Heaps & Priority Queues page 58

Binary Heaps

 Building a Heap from scratch

These nodes
only have to
Percolate Down
one level.

Binary Heaps & Priority Queues page 59

Binary Heaps

 Building a Heap from scratch
 Running time:

 Note:
 Realize that for any given complete tree, that is completely

filled, the lowest level has ½ of the total nodes in a tree
 In a complete tree of 31 nodes, the lowest level has 16 nodes

 And since they are already at the lowest level,
 Those 16 nodes will NOT need to Percolate Down

 The level above the 16 nodes has 8 nodes
 What can we say about those 8 nodes?
 Notice that, at MOST, those 8 nodes will have to Percolate

Down only one level
 And the level above the 8 nodes has 4 nodes
 Those 4 nodes, at most, percolate down 2 levels, etc, etc.

Binary Heaps & Priority Queues page 60

Binary Heaps

 Building a Heap from scratch

These nodes
only have to
Percolate Down
two levels.

Binary Heaps & Priority Queues page 61

Binary Heaps

 Building a Heap from scratch
 Running time:

 So only ½ of the nodes in a tree may need to be
percolated down one level or more

 Only ½ of those (1/4 of the total) may have to be
percolated down two or more levels

 Only ½ of those (1/8 of the total) may have to be
percolated down three or more levels, etc., etc.

 So if we add up the total number of swaps, we get:
 (1/2)*n + (1/4)*n + (1/8)*n + … ≈ n
 So this Heapify function runs in O(n) time

Binary Heaps & Priority Queues page 62

Brief Interlude: FAIL Picture

Binary Heaps & Priority Queues page 63

UCF Weekly Bike FAIL

Courtesy of
Kyle Perez

Binary Heaps & Priority Queues page 64

Binary Heaps

 Implementing a Binary Heap
 Remember:

 a binary heap is a complete binary tree

 So we can implement this binary tree as an array!
 How?

 If a tree is “complete”,
 The root would be the 1st position of the array (index 1)
 The two children of the node would be in index 2 and 3
 The 4 nodes on the next level would be in index 4 – 7
 The 8 nodes on the next level would be in index 8 - 15
 and so on

Binary Heaps & Priority Queues page 65

Binary Heaps

 Implementing a Binary Heap
 Notes:

 So we are wanting to implement one ADT
 A Priority Queue

 To do so, we utilize another ADT
 A Heap

 And to implement the actual Heap, which, in turn,
implements the Priority Queue
 We use an array!

 So after all of this, we simply use an array
 And the way we dereference the array and manipulate

the data is what makes “the array a tree”

Binary Heaps & Priority Queues page 66

 Implementing a Binary Heap

 We store the data
from the nodes in a
partially-filled array.

Binary Heaps

An array of data

2127

23

42

35

Binary Heaps & Priority Queues page 67

 Implementing a Binary Heap

 Data from the root
goes in the first
location of
the array.

Binary Heaps

An array of data

2127

23

42

35

42

Binary Heaps & Priority Queues page 68

 Implementing a Binary Heap

 Data from the next row
goes in the next two
array locations.

Binary Heaps

An array of data

2127

23

42

35

42 35 23

Binary Heaps & Priority Queues page 69

 Implementing a Binary Heap

 And now the next level,
or next four nodes of
the tree, would go
into the array

 We only have
two nodes

Binary Heaps

An array of data

2127

23

42

35

42 35 23 27 21

Binary Heaps & Priority Queues page 70

 Implementing a Binary Heap

 We are only concerned with
the front part of the array

 If the tree has 5 nodes, then
we only care about the first
five spots of the array

Binary Heaps

An array of data

2127

23

42

35

42 35 23 27 21

We don't care what's in this part of the array.

Binary Heaps & Priority Queues page 71

 Implementing a Binary Heap

 The links between the tree’s
nodes are not stored as pointers

 The only way we “know” that
the “array is a tree” is based
on how we choose to
manipulate the array

Binary Heaps

An array of data

2127

23

42

35

42 35 23 27 21

Binary Heaps & Priority Queues page 72

 Implementing a Binary Heap

 If you know the index of a node,
then it is easy to figure out the
index of that node’s parent
or children

Binary Heaps

2127

23

42

35

42 35 23 27 21

[1] [2] [3] [4] [5] [6]

Binary Heaps & Priority Queues page 73

 Implementing a Binary Heap

 The name of our array is A[]
 Root is at position A[1]
 Left child of A[i] = A[2i]
 Right child of A[i] = A[2i+1]
 Parent of A[i] = A[i/2]

Binary Heaps

2127

23

42

35

42 35 23 27 21

[1] [2] [3] [4] [5] [6]

Binary Heaps & Priority Queues page 74

 Implementing a Binary Heap
 Example:

Binary Heaps

6

10
12

15 17 18 23

20 19 34

Binary Heaps & Priority Queues page 75

 Implementing a Binary Heap
 Example:

 Consider node 17:
 Position in the array: 5
 It’s parent is 10, and is located at position [5/2] = 2
 17’s left child is node 34, and located at position 5*2 = 10
 17 has no right child. Position (2*5 + 1) = 11 (empty)

Binary Heaps

6 10 12 15 17 18 23 20 19 34

Binary Heaps & Priority Queues page 76

Binary Heaps

 Heapsort
 We can use heaps to sort our data
 Here’s the algorithm:

 Build a heap with all the n items
 Takes O(n) time (cuz we add to a binary tree and run Heapify)

 Extract the minimum item (if a Min-heap)
 O(1)

 Fix the heap after extraction
 O(logn)

 Perform this extraction n times for all the elements
 Store these removed items, sequentially, in an array
 Running time: O(nlogn)

Binary Heaps & Priority Queues page 77

Binary Heaps

 Summary:
 A binary heap is a tree that satisfies 2 properties:

 The Heap Property
 Max-heap OR Min-heap

 The Shape Property
 Must be a complete binary tree

 To add elements to a heap
 Place element at next available spot and Percolate Up

 To remove elements from a heap,
 Delete root, as it is always the one you want to remove
 Then copy last element to root’s position
 Finally, Percolate Down

Binary Heaps & Priority Queues page 78

Binary Heaps

 Sumary:
 The purpose of a heap is essentially to implement

a Priority Queue
 So we use one ADT to implement another ADT
 And then, at the end of it all, we simply implement

the Heap as an array!
 We know our array is a Heap (a tree) based on how we

dereference the array and how we choose to manipulate
the data

Binary Heaps & Priority Queues page 79

Binary Heaps & Priority Queues

WASN’T
THAT

PRODIGIOUS!

Binary Heaps & Priority Queues page 80

Daily Demotivator

Computer Science Department
University of Central Florida

Heaps &
Priority Queues

COP 3502 – Computer Science I

	Binary Heaps &�Priority Queues
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Brief Interlude: FAIL Picture
	UCF Weekly Bike FAIL
	UCF Weekly Bike FAIL
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Daily Demotivator
	Heaps &�Priority Queues
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Brief Interlude: FAIL Picture
	UCF Weekly Bike FAIL
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps & Priority Queues
	Daily Demotivator
	Heaps &�Priority Queues

