Quick Sort & Quick Select

Computer Science Department University of Central Florida

COP 3502 Recitation Session

The Selection Problem

- Given an integer k and n elements x₁, x₂, ..., x_n, taken from a total order, find the k-th smallest element in this set.
- Naïve solution SORT!
- we can sort the set in O(n log n) time and then index the k-th element.

7 4 9 $\underline{6}$ 2 \rightarrow 2 4 $\underline{6}$ 7 9

k=3

Can we solve the selection problem faster?

The Selection Problem

Can we solve the selection problem faster?

- Of course we can!
- We use Quick Select
- What is Quick Select?
 - Concept is very similar to Quick Sort
 - But in this case, we are not sorting
 - We don't care about sorting the numbers
 - BUT, we do care about finding the specific element

Quick-Select

- Quick-select is a randomized selection algorithm based on the prune-and-search paradigm:
 - Prune: pick a random element x (called pivot) and partition S into
 - L elements less than x
 - E elements equal x
 - G elements greater than x
 - Search: depending on k, either answer is in *E*, or we need to recur on either *L* or *G*

x E G L k > |L| + |E|k < |L|k' = k - |L| - |E||L| < k < |L| + |E|

(done)

Partition

- We partition an input sequence as in the quick-sort algorithm:
 - We remove, in turn, each element y from S and
 - We insert y into L, E or G, depending on the result of the comparison with the pivot x
- Each insertion and removal is at the beginning or at the end of a sequence, and hence takes O(1) time
- Thus, the partition step of quick-select takes O(n) time

Algorithm *partition*(*S*, *p*) **Input** sequence *S*, position *p* of pivot Output subsequences L, E, G of the elements of S less than, equal to, or greater than the pivot, resp. *L*, *E*, *G* \leftarrow empty sequences $x \leftarrow S.remove(p)$ while ¬*S.isEmpty*() $y \leftarrow S.remove(S.first())$ if y < x*L.insertLast*(y) else if y = x*E.insertLast*(y) else { y > x } G.insertLast(y) return L, E, G

Quick-Select Visualization

- An execution of quick-select can be visualized by a recursion path
 - Each node represents a recursive call of quick-select, and stores k and the remaining sequence

Running Time

- Best Case even splits (n/2 and n/2)
- Worst Case bad splits (1 and n-1)

Quick Sor	t & Qu	ick Select
-----------	--------	------------

Expected Running Time

Consider a recursive call of quick-select on a sequence of size *s*

- Good call: the sizes of *L* and *G* are each less than 3*s*/4
- **Bad call:** one of *L* and *G* has size greater than 3s/4

- A call is good with probability 1/2
 - 1/2 of the possible pivots cause good calls:

G

quickSelect Summary

- Recall: the Selection problem
 - Find the *k*th smallest element in an array *a*
- quickSelect(a, k):
- 1. If a.length = 1, then k=1 and return the element.
- 2. Pick a pivot $v \in a$.
- 3. Partition $a \{v\}$ into a_1 (left side) and a_2 (right side).
 - if $k \le a_1$.length, then the *k*th smallest element must be in a_1 . So return quickSelect(a_1, k).
 - else if $k = 1 + a_1$.length, return the pivot v.
 - Otherwise, the *k*th smallest element is in *a*₂.
 Return quickSelect(*a*₂, *k a*₁.length 1).

Quick Sort & Quick Select

Computer Science Department University of Central Florida

COP 3502 Recitation Session