
Computer Science Department
University of Central Florida

Quick Sort & Quick Select

COP 3502 Recitation Session



Quick Sort & Quick Select page 2

The Selection Problem

 Given an integer k and n elements x1, x2, …, xn, 
taken from a total order, find the k-th smallest 
element in this set.

 Naïve solution - SORT!
 we can sort the set in O(n log n) time and then 

index the k-th element.

 Can we solve the selection problem faster?

7  4  9  6 2  → 2  4  6 7  9 k=3



Quick Sort & Quick Select page 3

The Selection Problem

 Can we solve the selection problem faster?
 Of course we can!
 We use Quick Select

 What is Quick Select?
 Concept is very similar to Quick Sort
 But in this case, we are not sorting
 We don’t care about sorting the numbers
 BUT, we do care about finding the specific element



Quick Sort & Quick Select page 4

Quick-Select

 Quick-select is a randomized
selection algorithm based on 
the prune-and-search 
paradigm:
 Prune: pick a random element x

(called pivot) and partition S into 
 L elements less than x
 E elements equal x
 G elements greater than x

 Search: depending on k, either 
answer is in E, or we need to 
recur on either L or G

x

L G

x

E

k < |L|

|L| < k < |L|+|E|
(done)

k > |L|+|E|
k’ = k - |L| - |E|



Quick Sort & Quick Select page 5

Partition
 We partition an input 

sequence as in the quick-sort 
algorithm:
 We remove, in turn, each 

element y from S and 
 We insert y into L, E or G,

depending on the result of 
the comparison with the pivot 
x

 Each insertion and removal is 
at the beginning or at the end 
of a sequence, and hence 
takes O(1) time

 Thus, the partition step of 
quick-select takes O(n) time

Algorithm partition(S, p)
Input sequence S, position p of pivot 
Output subsequences L, E, G of the 

elements of S less than, equal to,
or greater than the pivot, resp.

L, E, G ← empty sequences
x ← S.remove(p)
while ¬S.isEmpty()

y ← S.remove(S.first())
if y < x

L.insertLast(y)
else if y = x

E.insertLast(y)
else { y > x }

G.insertLast(y)
return L, E, G



Quick Sort & Quick Select page 6

Quick-Select Visualization
 An execution of quick-select can be visualized by a 

recursion path
 Each node represents a recursive call of quick-select, and 

stores k and the remaining sequence

k=5, S=(7  4  9  3 2  6  5  1  8)

5

k=2, S=(7  4  9  6  5  8)

k=2, S=(7  4 6  5)

k=1, S=(7  6  5)



Quick Sort & Quick Select page 7

Running Time
 Best Case - even splits (n/2 and n/2)
 Worst Case - bad splits (1 and n-1)

7  9  7 1  → 1

7  2  9  4 3  7  6 1 9

2  4  3  1 7 2 9 4 3 7 61

7  2 9  4 3  7  6  1

Good call Bad call



Quick Sort & Quick Select page 8

Expected Running Time
 Consider a recursive call of quick-select on a sequence of size s

 Good call: the sizes of L and G are each less than 3s/4
 Bad call: one of L and G has size greater than 3s/4

 A call is good with probability 1/2
 1/2 of the possible pivots cause good calls:

7  9  7 1  → 1

7  2  9  4 3  7  6 1 9

2  4  3  1 7 2 9 4 3 7 61

7  2 9  4 3  7  6  1

Good call Bad call

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Good pivotsBad pivots Bad pivots



Quick Sort & Quick Select page 9

quickSelect Summary

 Recall: the Selection problem
 Find the kth smallest element in an array a

 quickSelect(a, k):
1. If a.length = 1, then k=1 and return the element.
2. Pick a pivot v ∈ a.
3. Partition a – {v} into a1 (left side) and a2 (right side).

• if k ≤ a1.length, then the kth smallest element must 
be in a1.  So return quickSelect(a1, k).

• else if k = 1 + a1.length, return the pivot v.
• Otherwise, the kth smallest element is in a2.  

Return quickSelect(a2, k - a1.length - 1).



Computer Science Department
University of Central Florida

Quick Sort & Quick Select

COP 3502 Recitation Session


	Quick Sort & Quick Select
	The Selection Problem
	The Selection Problem
	Quick-Select
	Partition
	Quick-Select Visualization
	 Running Time
	Expected Running Time
	quickSelect Summary
	Quick Sort & Quick Select

