Sorting: O(n²) Algorithms

Computer Science Department
University of Central Florida

COP 3502 - Computer Science I

Sorting: $\mathrm{O}\left(\mathrm{n}^{2}\right)$ Algorithms

- Sorting Algorithms:
- Fundamental problem in Computer Science
- Sorting is done to make searching easier
- Most programs do this:
- Excel, Access, and others.

Sorting: $\mathrm{O}\left(\mathrm{n}^{2}\right)$ Algorithms

- Sorting Algorithms:
- We will study several sorting algorithms in this class
- Some are clearly much faster than others
- For today, we will go over the "simple sorts"
- These "simple sorts" all run in $\mathrm{O}\left(\mathrm{n}^{2}\right)$ time
- Selection Sort
- Insertion Sort
- Bubble Sort
- We will assume that the input to the algorithm is an array of values (sorted or not)

Sorting: $\mathrm{O}\left(\mathrm{n}^{2}\right)$ Algorithms

Selection Sort:

- Given: an array of n unsorted items
- The algorithm to sort n numbers is as follows:

1) Find the minimum value in the list of n elements

- Search from index 0 to index n-1

2) Swap that minimum value with the value in the first position

- At index 0

3) Repeat steps 1 and 2 for the remainder of the list

- Example:
- We now start at the $2^{\text {nd }}$ position (index 1).
- Find minimum value from index 1 to index n-1
- Swap that minimum value with the value at index 1

Sorting: $\mathrm{O}\left(\mathrm{n}^{2}\right)$ Algorithms

Selection Sort:

- The algorithm to sort n numbers is as follows:
- There is a FOR loop that iterates from $i=0$ to $i=n-1$
- FOR the $\mathrm{i}^{\text {th }}$ element (as i ranges from 0 to $\mathrm{n}-1$)

1) Determine the smallest element in the rest of the array

- To the right of the $\mathrm{i}^{\text {th }}$ element

2) Swap the current $i^{\text {th }}$ element with the element identified in part (1) above (the smallest element)

- Essentially:
- The algorithm first picks the smallest element and swaps it into the first location.
- Then it picks the next smallest element and swaps it into the next location, etc.

Sorting: $\mathrm{O}\left(\mathrm{n}^{2}\right)$ Algorithms

Selection Sort:

- Example:
- Here is an array of 5 integers

20	8	5	10	7
0	1	2	3	4

$$
i=0
$$

- Remember, we have a for loop

$$
\text { FOR i = } 0 \text { to } \mathrm{n}-1 \text { \{ }
$$

Find the minimum value in the range from ito $n-1$ SWAP this minimum value with the value at index i
\}

- NOTE: i represents the index into the array

Sorting: $\mathrm{O}\left(\mathrm{n}^{2}\right)$ Algorithms

Selection Sort:

- Example:
- Here is an array of 5 integers

20	8	5	10	7
0	1	2	3	4

- 5 (at index 2) is the smallest element
- from the range $i=0$ to 4
- So SWAP the value at index 2 with the value at index 0
- SWAP the 5 and the 20

5	8	20	10	7
0	1	2	3	4

Sorting: $\mathrm{O}\left(\mathrm{n}^{2}\right)$ Algorithms

Selection Sort:

- Example:
- Here is an array of 5 integers

5	8	20	10	7
0	1	2	3	4

- 7 (at index 4) is the smallest element
- from the range $i=1$ to 4
- So SWAP the value at index 4 with the value at index 1
- SWAP the 7 and the 8

5	7	20	10	8
0	1	2	3	4

Sorting: $\mathrm{O}\left(\mathrm{n}^{2}\right)$ Algorithms

Selection Sort:

- Example:
- Here is an array of 5 integers

5	7	20	10	8		
0	1	2	3	4	\quad	$i=2$
:---						

- 8 (at index 4) is the smallest element
- from the range $i=2$ to 4
- So SWAP the value at index 4 with the value at index 2
- SWAP the 8 and the 20

5	7	8	10	20
0	1	2	3	4

Sorting: $\mathrm{O}\left(\mathrm{n}^{2}\right)$ Algorithms

Selection Sort:

- Example:
- Here is an array of 5 integers

5	7	8	10	20
0	1	2	3	4

- 10 (at index 3) is the smallest element
- from the range $i=3$ to 4
- So SWAP the value at index 3 with the value at index 3
- SWAP the 10 and the 10 (so no swap really happened here)

5	7	8	10	20
0	1	2	3	4

Sorting: $\mathrm{O}\left(\mathrm{n}^{2}\right)$ Algorithms

Selection Sort:

- Example:
- Here is an array of 5 integers

5	7	8	10	20		
0	1	2	3	4	\quad	$i=4$
:---:						

- 20 (at index 4) is the smallest element
- from the range $i=4$ to 4
- So SWAP the value at index 4 with the value at index 4
- SWAP the 20 and the 20 (so no swap really happened here)

5	7	8	10	20
0	1	2	3	4

Sorting: $\mathrm{O}\left(\mathrm{n}^{2}\right)$ Algorithms

Selection Sort:

- Example:
- Here is an array of 5 integers

5	7	8	10	20		
0	1	2	3	4	\quad	$i=4$
:---						

- The array is now in sorted order
- We see that the last iteration was not even necessary
- In code our for loop could look like this:

```
for (i = 0; i < n-1; i++)
```

- So it won't even iterate on the n-1 step

Sorting: $\mathrm{O}\left(\mathrm{n}^{2}\right)$ Algorithms

Selection Sort:

- Analysis of Running Time:
- During the first iteration
- We "go through" all n items searching for the minimum
- This is essentially n simple steps
- During the second iteration, i starts at index 1
- We "go through" n-1 items searching for the minimum
- We do not need to account for the item at index 0
- Cuz it is already in the correct position!
- During the third iteration,
- We "go through" $\mathrm{n}-2$ items searching for the minimum
- We do not need to account for the items at index 0 and 1
- Cuz they are already in correct position

Sorting: $\mathrm{O}\left(\mathrm{n}^{2}\right)$ Algorithms

Selection Sort:

- Analysis of Running Time:
- $4^{\text {th }}$ iteration:
- We will "go through" n - 3 steps
- $5^{\text {th }}$ iteration
- We will "go through" n - 4 steps
- Final iteration
- There will simply be one step
- We can add up the TOTAL number of simple steps
- TOTAL $=n+(n-1)+(n-2)+(n-3)+\ldots+3+2+1$
- Is this n^{2} steps? Perhaps logn steps? Perhaps n steps?

Sorting: $\mathrm{O}\left(\mathrm{n}^{2}\right)$ Algorithms

Selection Sort:

- Analysis of Running Time:
- TOTAL $=\mathrm{n}+(\mathrm{n}-1)+(\mathrm{n}-2)+(\mathrm{n}-3)+\ldots+3+2+1$
- We does this add up to?
- We need to know this in order to give the Big-O
- There is a neat trick!
- Write the equation shown above
- And then immediately underneath,
- Write the equation again, but REVERSE the order of the terms
- Then add the two equations together
- See what happens
- Finally, solve for TOTAL

Sorting: $\mathrm{O}\left(\mathrm{n}^{2}\right)$ Algorithms

Selection Sort:

- Analysis of Running Time:

TOTAL $=n+(n-1)+(n-2)+(n-3)+\ldots+3+2+1$
$\frac{+ \text { TOTAL }=1+2+3+4+\ldots+(n-2)+(n-1)+n}{2 * \text { TOTAL }=(n+1)+(n+1)+(n+1)+\ldots+(n+1)+(n+1)}$

- How many terms of $(n+1)$ do we have?
- We have n of them!
- So that is $n^{*}(n+1)$
- 2*TOTAL $=n(n+1)$
- TOTAL = n(n+1)/2
- So we see that Selection sort runs in $O\left(n^{2}\right)$ time.

Sorting: $\mathrm{O}\left(\mathrm{n}^{2}\right)$ Algorithms

- Insertion Sort:
- This is the sort that most humans apply when sorting documents
- Example: Playing Cards
- Players usually keep cards in sorted order
- When you pick up a new card
- You make room for the new card and put into its proper place

Sorting: $\mathrm{O}\left(\mathrm{n}^{2}\right)$ Algorithms

- Insertion Sort:
- The card example demonstrates the basic idea of Insertion Sort
- But the "idea" isn't exactly the same as sorting an array of items
- When sorting an array of items, we are ALREADY holding all of the items
- So how are we "inserting" an item when it is already in the list.
- We remove the items, one at a time, and then reinsert them into their proper positions

Sorting: $\mathrm{O}\left(\mathrm{n}^{2}\right)$ Algorithms

- Insertion Sort:
- Bookshelf example:
- If first two books are out of order:
- Remove second book
- Slide first book to right
- Insert removed book into first slot
- Next, look at third book, if it is out of order:
- Remove that book
- Slide $2^{\text {nd }}$ book to right
- Insert removed book into $2^{\text {nd }}$ slot
- Recheck first two books again
- Etc.

Sorting: $\mathrm{O}\left(\mathrm{n}^{2}\right)$ Algorithms

- Insertion Sort:
- Bookshelf example:
- This picture shows the "insertion" of the third book
- The $3^{\text {rd }}$ book is removed
- It is compared with the $2^{\text {nd }}$ book
- The $2^{\text {nd }}$ book is larger
- So we slide the $2^{\text {nd }}$ book into the $3^{\text {rd }}$ spot
- We then compare our original $3^{\text {rd }}$ book with the $1^{\text {st }}$ book
- They are in order
- So we simply insert the original $3^{\text {rd }}$ book in the $2^{\text {nd }}$ spot

(b)

(d)

Sorting: $\mathrm{O}\left(\mathrm{n}^{2}\right)$ Algorithms

- Insertion Sort:
- Bookshelf example:
- In general:

Sorting: $\mathrm{O}\left(\mathrm{n}^{2}\right)$ Algorithms

- Insertion Sort:
- Given: an array of n unsorted items
- The algorithm to sort n numbers is as follows:
- Starting with the $2^{\text {nd }}$ element,
- Take each element, one by one, and
- "Insert" it into a sorted list
- How do we insert it?
- continually SWAP it with the previous element until it has found its correct spot in the already sorted list
- When we say already sorted list, we are referring to the elements to the left of our current element
- Those elements are already in sorted order

Sorting: $\mathrm{O}\left(\mathrm{n}^{2}\right)$ Algorithms

- Insertion Sort:
- The algorithm to sort n numbers is as follows:
- For the ith element
- as i ranges from 1 to $n-1$ (week skip $i=0$, the $1^{\text {st }}$ element)
- As long as the current element is smaller than the element before it
- SWAP the two elements
- Stop when the current element is bigger than the one before it OR there is no element before it
- Meaning it has reached the front
- An example should clarify...

Sorting: $O\left(n^{2}\right)$ Algorithms

Insertion Sort:

- Example:
- Here is an array of 5 integers

3	7	2	1	5		
0	1	2	3	4	\quad	$i=1$
:---						

- Remember, we have a for loop

FOR $\mathrm{i}=1$ to $\mathrm{n}-1$ \{
WHILE the current element (at index i) is smaller than the element before it SWAP the two elements
\}

- NOTE: i represents the index into the array

Sorting: $\mathrm{O}\left(\mathrm{n}^{2}\right)$ Algorithms

- Insertion Sort:

- Example:
- Here is an array of 5 integers

3	7	2	1	5		
0	1	2	3	4	\quad	$i=1$
:---						

- 7 is the value at index 1
- Compare 7 to the value at index 0 (which is 3)
- 7 is greater than 3
- So there is nothing to swap. Simply re-insert 7 at its place.

3	7	2	1	5
0	1	2	3	4

Sorting: $\mathrm{O}\left(\mathrm{n}^{2}\right)$ Algorithms

- Insertion Sort:

- Example:
- Here is an array of 5 integers

3	7	2	1	5		
0	1	2	3	4	\quad	$i=2$
:---						

- 2 is the value at index 2
- Compare 2 to the value at index 1 (which is 7)
- 2 is smaller than 7
- So we SWAP
- BUT we are NOT done!

Sorting: $\mathrm{O}\left(\mathrm{n}^{2}\right)$ Algorithms

- Insertion Sort:

- Example:
- Here is an array of 5 integers

3	7	2	1	5		
0	1	2	3	4	\quad	$i=2$
:---						

- We must compare the 2 to the value at index 0
- which is 3
- 2 is smaller than 3
- So we SWAP

2	3	7	1	5
0	1	2	3	4

Sorting: $\mathrm{O}\left(\mathrm{n}^{2}\right)$ Algorithms

Insertion Sort:

- Example:
- Here is an array of 5 integers

2	3	7	1	5
0	1	2	3	4

- 1 is the value at index 3
- Compare 1 to the value at index 2 (which is 7)
- 1 is smaller than 7
- So we SWAP
- 1 is smaller than 3

Continue comparing 1 to the element before it

- So we SWAP

Sorting: $\mathrm{O}\left(\mathrm{n}^{2}\right)$ Algorithms

Insertion Sort:

- Example:
- Here is an array of 5 integers

2	3	7	1	5		
0	1	2	3	4	\quad	$i=3$
:---						

- 1 is smaller than the value at index 0 (which is 2)
- So we SWAP
- There is no element "before" 1 at this point
- So we simply insert

1	2	3	7	5
0	1	2	3	4

Sorting: $\mathrm{O}\left(\mathrm{n}^{2}\right)$ Algorithms

Insertion Sort:

- Example:
- Here is an array of 5 integers

1	2	3	7	5		
0	1	2	3	4	\quad	$i=4$
:---						

- 5 is the value at index 4
- Compare 5 to the value at index 3 (which is 7)
- 5 is smaller than 7
- So we SWAP
- Again, we are not done

Sorting: $\mathrm{O}\left(\mathrm{n}^{2}\right)$ Algorithms

- Insertion Sort:

- Example:
- Here is an array of 5 integers

1	2	3	7	5		
0	1	2	3	4	\quad	$i=4$
:---						

- We must now compare 5 to the next element before it
- So compare 5 to 3
- 5 is greater than 3, so we can stop and insert 5

Sorting: O(n²) Algorithms

Insertion Sort:

- Analysis of Running Time:
- The number of steps varies based on the input
- If the list is already in sorted order (best case)
- During each iteration, the ith element is only compared with one previous element
- This results in a linear run-time, or $O(n)$
- If the list is sorted in reverse order (worst case)
- During each iteration, the ith element will have to go all the way over to the left
- During each iteration, the entire, sorted subsection of the array will be shifted over to allow the ith element to go into the front
- This results in a quadratic run-time, or $\mathrm{O}\left(\mathrm{n}^{2}\right)$
- We care about worst case; Insertion Sort runs in $\mathrm{O}\left(\mathrm{n}^{2}\right)$.

Brief Interlude: FAIL Picture

Sorting: $\mathrm{O}\left(\mathrm{n}^{2}\right)$ Algorithms

Bubble Sort:

- Basic idea:
- You always compare consecutive elements
- Going left to right
- Whenever two elements are out of place,
- SWAP them
- At the end of a single iteration,
- the maximum element will be in the last spot
- Now you simply repeat this n times
- where n is the number of elements being sorted
- One each pass, one more maximal element will be put into place

Sorting: $\mathrm{O}\left(\mathrm{n}^{2}\right)$ Algorithms

Bubble Sort:

- Example:
- Here is an array of 8 integers: $6,2,5,7,3,8,4,1$
- On a single pass of the algorithm, here is the state of the array:

$\underline{2}, 6,5,7,3,8,4,1$	
$2,5,6,7,3,8,4,1$	
$2,5,6,7$	$3,8,4,1$
$2,5,6,3,7,8,4,1$	The
$2,5,6,3,7,8,4,1$	
$2,5,6,3,7,4,8,1$	
$2,5,6,3,7,4,1,8$	
are (8 is now in place!)	

Sorting: $\mathrm{O}\left(\mathrm{n}^{2}\right)$ Algorithms

Bubble Sort:

- Truth about Bubble Sort:
- NOBODY uses Bubble Sort
- NOBODY.
- EVER.
- 'cept this guy:

- cuz Bubble sort is extremely inefficient

Sorting: $\mathrm{O}\left(\mathrm{n}^{2}\right)$ Algorithms

- Sorts that only swap adjacent elements
- Selection, Insertion, and Bubble sort are examples of sorts where we swap adjacent elements
- LIMITATION of these types of sorts:
- They can only run so fast.
- We can see this once we define an inversion:
- Inversion: a pair of numbers in a list that is out of order
- Given this list: 3, 1, 8, 4, 5
- The inversions are the following pairs of numbers:
- $(3,1),(8,4)$, and then $(8,5)$

Sorting: $\mathrm{O}\left(\mathrm{n}^{2}\right)$ Algorithms

- Sorts that only swap adjacent elements
- LIMITATION of these types of sorts:
- They can only run so fast.
- We can see this once we define an inversion:
- When we swap adjacent elements in an array
- We can remove AT MOST one inversion from the array
- Now, if it were possible to swap non-adjacent elements,
- We could remove multiple inversions at the same time
- Consider the following list: $8,2,3,4,5,6,7,1$
- Only 8 and 1 are out of order
- Swapping these two values would remove every inversion
- It would normally require 13 inversions to get the list sorted if we were limited to swapping only adjacent elements

Sorting: $\mathrm{O}\left(\mathrm{n}^{2}\right)$ Algorithms

Sorts that only swap adjacent elements

- Run-time Analysis:
- Any sorting algorithm that swaps adjacent elements is constrained by the total number of inversions in that array
- Consider the average case:
- How many pairs of numbers are there in a list of n numbers?

$$
\binom{n}{2}=\frac{n(n-1)}{2}
$$

You learn this in Discrete and certain Math courses. For now, just trust me on this.

- Of these pairs, on average, HALF of them will be inverted.

$$
\begin{array}{ll}
\frac{n(n-1)}{4} & \begin{array}{l}
\text { We simply divided the previous amount } \\
\text { bv 2 thus leaving HALF of the pairs left. }
\end{array}
\end{array}
$$

Sorting: $\mathrm{O}\left(\mathrm{n}^{2}\right)$ Algorithms

- Sorts that only swap adjacent elements
- Run-time Analysis:
- So, on average, an unsorted array will have $\frac{n(n-1)}{4}$ inversions
- Therefore, any sorting algorithm that only swaps adjacent elements will have an $O\left(n^{2}\right)$ run-time.

Sorting: $\mathrm{O}\left(\mathrm{n}^{2}\right)$ Algorithms

WASN'T

THAT

AMAZING!

Daily Demotivator

Sorting: O(n²) Algorithms

Computer Science Department
University of Central Florida

COP 3502 - Computer Science I

