
Computer Science Department
University of Central Florida

Sorting:
O(n2) Algorithms

COP 3502 – Computer Science I

Sorting: O(n2) Algorithms page 2

Sorting: O(n2) Algorithms

 Sorting Algorithms:
 Fundamental problem in Computer Science
 Sorting is done to make searching easier
 Most programs do this:

 Excel, Access, and others.

Sorting: O(n2) Algorithms page 3

Sorting: O(n2) Algorithms

 Sorting Algorithms:
 We will study several sorting algorithms in this class

 Some are clearly much faster than others

 For today, we will go over the “simple sorts”
 These “simple sorts” all run in O(n2) time

 Selection Sort
 Insertion Sort
 Bubble Sort

 We will assume that the input to the algorithm is an array
of values (sorted or not)

Sorting: O(n2) Algorithms page 4

Sorting: O(n2) Algorithms

 Selection Sort:
 Given: an array of n unsorted items
 The algorithm to sort n numbers is as follows:

1) Find the minimum value in the list of n elements
 Search from index 0 to index n-1

2) Swap that minimum value with the value in the first
position
 At index 0

3) Repeat steps 1 and 2 for the remainder of the list
 Example:
 We now start at the 2nd position (index 1).
 Find minimum value from index 1 to index n-1
 Swap that minimum value with the value at index 1

Sorting: O(n2) Algorithms page 5

Sorting: O(n2) Algorithms

 Selection Sort:
 The algorithm to sort n numbers is as follows:

 There is a FOR loop that iterates from i = 0 to i = n-1
 FOR the ith element (as i ranges from 0 to n-1)
1) Determine the smallest element in the rest of the array

 To the right of the ith element
2) Swap the current ith element with the element identified

in part (1) above (the smallest element)
 Essentially:

 The algorithm first picks the smallest element and swaps it
into the first location.

 Then it picks the next smallest element and swaps it into the
next location, etc.

Sorting: O(n2) Algorithms page 6

 Selection Sort:
 Example:

 Here is an array of 5 integers

 Remember, we have a for loop
FOR i = 0 to n – 1 {

Find the minimum value in the range from i to n-1
SWAP this minimum value with the value at index i

}

 NOTE: i represents the index into the array

Sorting: O(n2) Algorithms

0 1 2 3 4

20 8 5 10 7 i = 0

Sorting: O(n2) Algorithms page 7

 Selection Sort:
 Example:

 Here is an array of 5 integers

 5 (at index 2) is the smallest element
 from the range i = 0 to 4

 So SWAP the value at index 2 with the value at index 0
 SWAP the 5 and the 20

Sorting: O(n2) Algorithms

0 1 2 3 4

20 8 5 10 7

0 1 2 3 4

5 8 20 10 7

i = 0

Sorting: O(n2) Algorithms page 8

 Selection Sort:
 Example:

 Here is an array of 5 integers

 7 (at index 4) is the smallest element
 from the range i = 1 to 4

 So SWAP the value at index 4 with the value at index 1
 SWAP the 7 and the 8

Sorting: O(n2) Algorithms

0 1 2 3 4

5 8 20 10 7 i = 1

0 1 2 3 4

5 7 20 10 8

Sorting: O(n2) Algorithms page 9

 Selection Sort:
 Example:

 Here is an array of 5 integers

 8 (at index 4) is the smallest element
 from the range i = 2 to 4

 So SWAP the value at index 4 with the value at index 2
 SWAP the 8 and the 20

Sorting: O(n2) Algorithms

0 1 2 3 4

5 7 20 10 8 i = 2

0 1 2 3 4

5 7 8 10 20

Sorting: O(n2) Algorithms page 10

 Selection Sort:
 Example:

 Here is an array of 5 integers

 10 (at index 3) is the smallest element
 from the range i = 3 to 4

 So SWAP the value at index 3 with the value at index 3
 SWAP the 10 and the 10 (so no swap really happened here)

Sorting: O(n2) Algorithms

0 1 2 3 4

5 7 8 10 20 i = 3

0 1 2 3 4

5 7 8 10 20

Sorting: O(n2) Algorithms page 11

 Selection Sort:
 Example:

 Here is an array of 5 integers

 20 (at index 4) is the smallest element
 from the range i = 4 to 4

 So SWAP the value at index 4 with the value at index 4
 SWAP the 20 and the 20 (so no swap really happened here)

Sorting: O(n2) Algorithms

0 1 2 3 4

5 7 8 10 20 i = 4

0 1 2 3 4

5 7 8 10 20

Sorting: O(n2) Algorithms page 12

 Selection Sort:
 Example:

 Here is an array of 5 integers

 The array is now in sorted order
 We see that the last iteration was not even necessary

 In code our for loop could look like this:
for (i = 0; i < n-1; i++)

 So it won’t even iterate on the n-1 step

Sorting: O(n2) Algorithms

0 1 2 3 4

5 7 8 10 20 i = 4

Sorting: O(n2) Algorithms page 13

Sorting: O(n2) Algorithms

 Selection Sort:
 Analysis of Running Time:

 During the first iteration
 We “go through” all n items searching for the minimum
 This is essentially n simple steps

 During the second iteration, i starts at index 1
 We “go through” n – 1 items searching for the minimum
 We do not need to account for the item at index 0
 Cuz it is already in the correct position!

 During the third iteration,
 We “go through” n – 2 items searching for the minimum
 We do not need to account for the items at index 0 and 1
 Cuz they are already in correct position

Sorting: O(n2) Algorithms page 14

Sorting: O(n2) Algorithms

 Selection Sort:
 Analysis of Running Time:

 4th iteration:
 We will “go through” n – 3 steps

 5th iteration
 We will “go through” n – 4 steps

 …
 Final iteration

 There will simply be one step
 We can add up the TOTAL number of simple steps
 TOTAL = n + (n-1) + (n-2) + (n-3) + … + 3 + 2 + 1
 Is this n2 steps? Perhaps logn steps? Perhaps n steps?

Sorting: O(n2) Algorithms page 15

Sorting: O(n2) Algorithms

 Selection Sort:
 Analysis of Running Time:

 TOTAL = n + (n-1) + (n-2) + (n-3) + … + 3 + 2 + 1
 We does this add up to?

 We need to know this in order to give the Big-O
 There is a neat trick!
 Write the equation shown above
 And then immediately underneath,

 Write the equation again, but REVERSE the order of the terms
 Then add the two equations together

 See what happens
 Finally, solve for TOTAL

Sorting: O(n2) Algorithms page 16

Sorting: O(n2) Algorithms

 Selection Sort:
 Analysis of Running Time:

TOTAL = n + (n-1) + (n-2) + (n-3) + … + 3 + 2 + 1
TOTAL = 1 + 2 + 3 + 4 + …+ (n-2) + (n-1) + n
2*TOTAL = (n+1) + (n+1) + (n+1) + … + (n+1) + (n+1)

 How many terms of (n+1) do we have?
 We have n of them!

 So that is n*(n+1)
 2*TOTAL = n(n+1)
 TOTAL = n(n+1)/2
 So we see that Selection sort runs in O(n2) time.

+

Sorting: O(n2) Algorithms page 17

Sorting: O(n2) Algorithms

 Insertion Sort:
 This is the sort that most humans apply when

sorting documents
 Example: Playing Cards

 Players usually keep cards in sorted order
 When you pick up a new card

 You make room for the new card and put into its proper place

Sorting: O(n2) Algorithms page 18

Sorting: O(n2) Algorithms

 Insertion Sort:
 The card example demonstrates the basic idea of

Insertion Sort
 But the “idea” isn’t exactly the same as sorting an array

of items

 When sorting an array of items, we are ALREADY
holding all of the items

 So how are we “inserting” an item when it is
already in the list.

 We remove the items, one at a time, and then
reinsert them into their proper positions

Sorting: O(n2) Algorithms page 19

Sorting: O(n2) Algorithms

 Insertion Sort:
 Bookshelf example:
 If first two books are out of order:

 Remove second book
 Slide first book to right
 Insert removed book into first slot

 Next, look at third book, if it is out of order:
 Remove that book
 Slide 2nd book to right
 Insert removed book into 2nd slot

 Recheck first two books again
 Etc.

Sorting: O(n2) Algorithms page 20

Sorting: O(n2) Algorithms

 Insertion Sort:
 Bookshelf example:

 This picture shows the “insertion”
of the third book
 The 3rd book is removed
 It is compared with the 2nd book
 The 2nd book is larger
 So we slide the 2nd book into the

3rd spot
 We then compare our original 3rd

book with the 1st book
 They are in order
 So we simply insert the original 3rd

book in the 2nd spot

Sorting: O(n2) Algorithms page 21

Sorting: O(n2) Algorithms

 Insertion Sort:
 Bookshelf example:

 In general:

Sorting: O(n2) Algorithms page 22

Sorting: O(n2) Algorithms

 Insertion Sort:
 Given: an array of n unsorted items
 The algorithm to sort n numbers is as follows:

 Starting with the 2nd element,
 Take each element, one by one, and
 “Insert” it into a sorted list
 How do we insert it?

 continually SWAP it with the previous element until it has
found its correct spot in the already sorted list
 When we say already sorted list, we are referring to the

elements to the left of our current element
 Those elements are already in sorted order

Sorting: O(n2) Algorithms page 23

Sorting: O(n2) Algorithms

 Insertion Sort:
 The algorithm to sort n numbers is as follows:

 For the ith element
 as i ranges from 1 to n-1 (week skip i = 0, the 1st element)

 As long as the current element is smaller than the
element before it
 SWAP the two elements

 Stop when the current element is bigger than the one
before it OR there is no element before it
 Meaning it has reached the front

 An example should clarify…

Sorting: O(n2) Algorithms page 24

 Insertion Sort:
 Example:

 Here is an array of 5 integers

 Remember, we have a for loop
FOR i = 1 to n – 1 {

WHILE the current element (at index i) is smaller than the
element before it

SWAP the two elements
}

 NOTE: i represents the index into the array

Sorting: O(n2) Algorithms

0 1 2 3 4

3 7 2 1 5 i = 1

Sorting: O(n2) Algorithms page 25

 Insertion Sort:
 Example:

 Here is an array of 5 integers

 7 is the value at index 1
 Compare 7 to the value at index 0 (which is 3)

 7 is greater than 3
 So there is nothing to swap. Simply re-insert 7 at its place.

Sorting: O(n2) Algorithms

0 1 2 3 4

3 7 2 1 5

i = 1
0 1 2 3 4

3 7 2 1 5

Sorting: O(n2) Algorithms page 26

 Insertion Sort:
 Example:

 Here is an array of 5 integers

 2 is the value at index 2
 Compare 2 to the value at index 1 (which is 7)

 2 is smaller than 7
 So we SWAP

 BUT we are NOT done!

Sorting: O(n2) Algorithms

i = 2
0 1 2 3 4

3 7 2 1 5

Sorting: O(n2) Algorithms page 27

 Insertion Sort:
 Example:

 Here is an array of 5 integers

 We must compare the 2 to the value at index 0
 which is 3

 2 is smaller than 3
 So we SWAP

Sorting: O(n2) Algorithms

i = 2
0 1 2 3 4

3 7 2 1 5

0 1 2 3 4

2 3 7 1 5

Sorting: O(n2) Algorithms page 28

 Insertion Sort:
 Example:

 Here is an array of 5 integers

 1 is the value at index 3
 Compare 1 to the value at index 2 (which is 7)

 1 is smaller than 7
 So we SWAP

 1 is smaller than 3
 So we SWAP

Sorting: O(n2) Algorithms

i = 3
0 1 2 3 4

2 3 7 1 5

Continue comparing 1 to
the element before it

Sorting: O(n2) Algorithms page 29

 Insertion Sort:
 Example:

 Here is an array of 5 integers

 1 is smaller than the value at index 0 (which is 2)
 So we SWAP

 There is no element “before” 1 at this point
 So we simply insert

Sorting: O(n2) Algorithms

i = 3
0 1 2 3 4

2 3 7 1 5

0 1 2 3 4

1 2 3 7 5

Sorting: O(n2) Algorithms page 30

 Insertion Sort:
 Example:

 Here is an array of 5 integers

 5 is the value at index 4
 Compare 5 to the value at index 3 (which is 7)

 5 is smaller than 7
 So we SWAP

 Again, we are not done

Sorting: O(n2) Algorithms

i = 4
0 1 2 3 4

1 2 3 7 5

Sorting: O(n2) Algorithms page 31

 Insertion Sort:
 Example:

 Here is an array of 5 integers

 We must now compare 5 to the next element before it
 So compare 5 to 3
 5 is greater than 3, so we can stop and insert 5

Sorting: O(n2) Algorithms

i = 4
0 1 2 3 4

1 2 3 7 5

0 1 2 3 4

1 2 3 5 7

Sorting: O(n2) Algorithms page 32

Sorting: O(n2) Algorithms

 Insertion Sort:
 Analysis of Running Time:

 The number of steps varies based on the input
 If the list is already in sorted order (best case)

 During each iteration, the ith element is only compared with
one previous element

 This results in a linear run-time, or O(n)
 If the list is sorted in reverse order (worst case)

 During each iteration, the ith element will have to go all the
way over to the left
 During each iteration, the entire, sorted subsection of the array

will be shifted over to allow the ith element to go into the front
 This results in a quadratic run-time, or O(n2)

 We care about worst case; Insertion Sort runs in O(n2).

Sorting: O(n2) Algorithms page 33

Brief Interlude: FAIL Picture

Sorting: O(n2) Algorithms page 34

Sorting: O(n2) Algorithms

 Bubble Sort:
 Basic idea:

 You always compare consecutive elements
 Going left to right

 Whenever two elements are out of place,
 SWAP them

 At the end of a single iteration,
 the maximum element will be in the last spot

 Now you simply repeat this n times
 where n is the number of elements being sorted

 One each pass, one more maximal element will be put
into place

Sorting: O(n2) Algorithms page 35

Sorting: O(n2) Algorithms

 Bubble Sort:
 Example:

 Here is an array of 8 integers: 6, 2, 5, 7, 3, 8, 4, 1
 On a single pass of the algorithm, here is the state of the

array:
2, 6, 5, 7, 3, 8, 4, 1
2, 5, 6, 7, 3, 8, 4, 1
2, 5, 6, 7, 3, 8, 4, 1
2, 5, 6, 3, 7, 8, 4, 1
2, 5, 6, 3, 7, 8, 4, 1
2, 5, 6, 3, 7, 4, 8, 1
2, 5, 6, 3, 7, 4, 1, 8 (8 is now in place!)

The “swapped” elements
are underlined.

Of course, a swap only
occurs as needed.

Sorting: O(n2) Algorithms page 36

Sorting: O(n2) Algorithms

 Bubble Sort:
 Truth about Bubble Sort:
 NOBODY uses Bubble Sort
 NOBODY.
 EVER.
 ‘cept this guy:

 cuz Bubble sort is extremely inefficient

Sorting: O(n2) Algorithms page 37

Sorting: O(n2) Algorithms

 Sorts that only swap adjacent elements
 Selection, Insertion, and Bubble sort are examples

of sorts where we swap adjacent elements
 LIMITATION of these types of sorts:

 They can only run so fast.

 We can see this once we define an inversion:
 Inversion: a pair of numbers in a list that is out of order
 Given this list: 3, 1, 8, 4, 5
 The inversions are the following pairs of numbers:

 (3,1), (8, 4), and then (8, 5)

Sorting: O(n2) Algorithms page 38

Sorting: O(n2) Algorithms

 Sorts that only swap adjacent elements
 LIMITATION of these types of sorts:

 They can only run so fast.

 We can see this once we define an inversion:
 When we swap adjacent elements in an array

 We can remove AT MOST one inversion from the array
 Now, if it were possible to swap non-adjacent elements,

 We could remove multiple inversions at the same time
 Consider the following list: 8, 2, 3, 4, 5, 6, 7, 1

 Only 8 and 1 are out of order
 Swapping these two values would remove every inversion
 It would normally require 13 inversions to get the list sorted if we

were limited to swapping only adjacent elements

Sorting: O(n2) Algorithms page 39

Sorting: O(n2) Algorithms

 Sorts that only swap adjacent elements
 Run-time Analysis:

 Any sorting algorithm that swaps adjacent elements is
constrained by the total number of inversions in that
array

 Consider the average case:
 How many pairs of numbers are there in a list of n numbers?

 Of these pairs, on average, HALF of them will be inverted.

2
)1(

2
−

=

 nnn

4
)1(−nn We simply divided the previous amount

by 2, thus leaving HALF of the pairs left.

You learn this in Discrete and certain Math
courses. For now, just trust me on this.

Sorting: O(n2) Algorithms page 40

Sorting: O(n2) Algorithms

 Sorts that only swap adjacent elements
 Run-time Analysis:

 So, on average, an unsorted array will have

 Therefore, any sorting algorithm that only swaps
adjacent elements will have an O(n2) run-time.

4
)1(−nn inversions

Sorting: O(n2) Algorithms page 41

Sorting: O(n2) Algorithms

WASN’T
THAT

AMAZING!

Sorting: O(n2) Algorithms page 42

Daily Demotivator

Computer Science Department
University of Central Florida

Sorting:
O(n2) Algorithms

COP 3502 – Computer Science I

	Sorting:�O(n2) Algorithms
	Sorting: O(n2) Algorithms
	Sorting: O(n2) Algorithms
	Sorting: O(n2) Algorithms
	Sorting: O(n2) Algorithms
	Sorting: O(n2) Algorithms
	Sorting: O(n2) Algorithms
	Sorting: O(n2) Algorithms
	Sorting: O(n2) Algorithms
	Sorting: O(n2) Algorithms
	Sorting: O(n2) Algorithms
	Sorting: O(n2) Algorithms
	Sorting: O(n2) Algorithms
	Sorting: O(n2) Algorithms
	Sorting: O(n2) Algorithms
	Sorting: O(n2) Algorithms
	Sorting: O(n2) Algorithms
	Sorting: O(n2) Algorithms
	Sorting: O(n2) Algorithms
	Sorting: O(n2) Algorithms
	Sorting: O(n2) Algorithms
	Sorting: O(n2) Algorithms
	Sorting: O(n2) Algorithms
	Sorting: O(n2) Algorithms
	Sorting: O(n2) Algorithms
	Sorting: O(n2) Algorithms
	Sorting: O(n2) Algorithms
	Sorting: O(n2) Algorithms
	Sorting: O(n2) Algorithms
	Sorting: O(n2) Algorithms
	Sorting: O(n2) Algorithms
	Sorting: O(n2) Algorithms
	Brief Interlude: FAIL Picture
	Sorting: O(n2) Algorithms
	Sorting: O(n2) Algorithms
	Sorting: O(n2) Algorithms
	Sorting: O(n2) Algorithms
	Sorting: O(n2) Algorithms
	Sorting: O(n2) Algorithms
	Sorting: O(n2) Algorithms
	Sorting: O(n2) Algorithms
	Daily Demotivator
	Sorting:�O(n2) Algorithms

