
Computer Science Department
University of Central Florida

Binary Trees:
Practice Problems

COP 3502 – Computer Science I

Binary Trees: Practice Problems page 2

Binary Trees: Practice Problems

 Warmup Problem 1:
 Searching for a node in a BST

int find (struct tree_node *current_ptr, int val) {
// Check if there are nodes in the tree.
if (current_ptr != NULL) {

// Found the value at the root.
if (current_ptr->data == val)

return 1;
// Search to the left.
if (val < current_ptr->data)

return find(current_ptr->left, val);
// Or...search to the right.
else

return find(current_ptr->right, val);
}
else

return 0;
}

Binary Trees: Practice Problems page 3

Binary Trees: Practice Problems

 Warmup Problem 2:
 Searching for a node in an arbitrary tree

 Not a BST
 Doesn’t have the ordering property

int Find(struct tree_node *current_ptr, int val) {
if (current_ptr != NULL) {

if (current_prt->data == val)
return 1;

return (Find(current_ptr->left, val) ||
Find(current_ptr->right, val))

}
else

return 0;
}

Binary Trees: Practice Problems page 4

Binary Trees: Practice Problems

 Warmup Problem 3:
 Summing the values of nodes in a tree

int add(struct tree_node *current_ptr) {
if (current_ptr != NULL)

return current_ptr->data +
add(current_ptr->left)+ add(current_ptr->right);

else
return 0;

}

Binary Trees: Practice Problems page 5

Binary Trees: Practice Problems

 Count Nodes:
 Write a function that counts (and returns) the

number of nodes in a binary tree

 Details:
 If the “root” is not NULL, then the root increases our count

 Shown by the return of 1
 We then call count on the left and right subtrees of root

int count(struct tree_node *root) {
if (current_ptr != NULL)

return 1 + count(root->left)+ add(root->right);
else

return 0;
}

Binary Trees: Practice Problems page 6

Binary Trees: Practice Problems

 Count Leaf Nodes:
 Write a function that counts (and returns) the

number of leaf nodes in a binary tree

int numLeaves(struct tree_node *p) {
if (p!= NULL) {

if (p->left == NULL && p->right == NULL)
return 1;

else
return numLeaves(p->left) + numLeaves(p->right);

}
else

return 0;
}

Binary Trees: Practice Problems page 7

Binary Trees: Practice Problems

 Print Even Nodes:
 Write a function that prints out all even nodes in a

binary search tree

 This is basically just a traversal
 Except we added a condition (IF) statement before the

print statement

int printEven(struct tree_node *current_ptr) {
if (current_ptr != NULL) {

if (current_ptr->data % 2 == 0)
printf(“%d “, current_ptr->data);

printEven(current_ptr->left);
printEven(current_ptr->right);

}
}

Binary Trees: Practice Problems page 8

Binary Trees: Practice Problems

 Print Odd Nodes (in ascending order):
 Write a function that prints out all odd nodes, in a

binary search tree, in ascending order

 The question requested ascending order
 This requires an inorder traversal
 So we simply changed the order of the statements

int printOddAsc(struct tree_node *current_ptr) {
if (current_ptr != NULL) {

printOddAsc (current_ptr->left);
if (current_ptr->data % 2 == 1)

printf(“%d “, current_ptr->data);
printOddAsc (current_ptr->right);

}
}

Binary Trees: Practice Problems page 9

Brief Interlude: FAIL Picture

Binary Trees: Practice Problems page 10

Binary Trees: Practice Problems

 Compute Height:
 Write a recursive function to compute the height of

a tree
 Defined as the length of the longest path from the root to a

leaf node
 For the purposes of this problem,

 a tree with only one node has height 1
 and an empty tree has height 0

 Your function should make use of the following struct:
struct tree_node {

int data;
struct tree_node* left;
struct tree_node* right;

};

Binary Trees: Practice Problems page 11

Binary Trees: Practice Problems

 Compute Height:

int height(struct tree_node* root) {

int leftHeight, rightHeight;

if(root == NULL)
return 0;

leftHeight = height(root->left);
rightHeight = height(root->right);

if(leftHeight > rightHeight)
return leftHeight + 1;

return rightHeight + 1;
}

Binary Trees: Practice Problems page 12

Binary Trees: Practice Problems

 Find Largest:
 Write a recursive function that returns a pointer to

the node containing the largest element in a BST
 This one should be easy:
 This is a BST, meaning it has the ordering property
 So where is the largest node located

 either the root or the greatest node in the right subtree
 Your function should make use of the following struct:

struct tree_node {
int data;
struct tree_node* left;
struct tree_node* right;

};

Binary Trees: Practice Problems page 13

Binary Trees: Practice Problems

 Find Largest:
struct node* largest(struct tree_node *B) {

// if B is NULL, there is no node
if (B == NULL)

return NULL;
// If B’s right is NULL, that means B is the largest
else if (B->right == NULL)

return B;

// SO if B’s right was NOT equal to NULL,
// There is a right subtree of B.
// Which means that the largest value is in this
// subtree. So recursively call B’s right.
else

return largest(B->right);
}

Binary Trees: Practice Problems page 14

Binary Trees: Practice Problems

 Number of Single Children:
 In a binary tree, each node can have zero, one, or

two children
 Write a recursive function that returns the number

of nodes with a single child

 Your function should make use of the following
struct:

struct tree_node {
int data;
struct tree_node* left;
struct tree_node* right;

};

Binary Trees: Practice Problems page 15

Binary Trees: Practice Problems

 Number of Single Children:
int one (struct tree_node *p) {

if (p != NULL) {
if (p->left == NULL)

if (p->right != NULL)
return 1 + one(p->right);

else if (p->right == NULL)
if (p->left != NULL)

return 1 + one(p->left);
else

return one(p->left) + one(p->right);
}

}

Binary Trees: Practice Problems page 16

Binary Trees: Practice Problems

WASN’T
THAT

SPICY!

Binary Trees: Practice Problems page 17

Daily Demotivator

Computer Science Department
University of Central Florida

Binary Trees:
Practice Problems

COP 3502 – Computer Science I

	Binary Trees:�Practice Problems
	Binary Trees: Practice Problems
	Binary Trees: Practice Problems
	Binary Trees: Practice Problems
	Binary Trees: Practice Problems
	Binary Trees: Practice Problems
	Binary Trees: Practice Problems
	Binary Trees: Practice Problems
	Brief Interlude: FAIL Picture
	Binary Trees: Practice Problems
	Binary Trees: Practice Problems
	Binary Trees: Practice Problems
	Binary Trees: Practice Problems
	Binary Trees: Practice Problems
	Binary Trees: Practice Problems
	Binary Trees: Practice Problems
	Daily Demotivator
	Binary Trees:�Practice Problems

