Binary Trees

Computer Science Department University of Central Florida

COP 3502 - Computer Science I

Outline

- Tree Stuff
- Trees
- Binary Trees
- Implementation of a Binary Tree
- Tree Traversals - Depth First
- Preorder
- Inorder
- Postorder
- Breadth First Tree Traversal
- Binary Search Trees

Tree Stuff

\square Trees:

- Another Abstract Data Type
- Data structure made of nodes and pointers
- Much like a linked list
- The difference between the two is how they are organized.
- A linked list represents a linear structure
- A predecessor/successor relationship between the nodes of the list
- A tree represents a hierarchical or ancestral relationship between the nodes
- A node in a tree can have several successors, which we refer to as children

Tree Stuff

- Trees:
- General Tree Information:
- Top node in a tree is called the root
- the root node has no parent above it
- Every node in the tree can have "children" nodes
- Each child node can, in turn, be a parent to its children and so on
- Nodes having no children are called leaves
- Any node that is not a root or a leaf is an interior node
- The height of a tree is defined to be the length of the longest path from the root to a leaf in that tree.
- A tree with only one node (the root) has a height of zero.

Tree Stuff

- Trees:
- Here's a purty picture of a tree:
- 2 is the root
- $2,5,11$, and 4 are leaves
- $7,5,6$, and 9 are interior nodes

Tree Stuff

- Binary Trees:
- A tree in which each node can have a maximum of two children
- Each node can have no child, one child, or two children
- And a child can only have one parent
- Pointers help us to identify if it is a right child or a left one

Examples of two Binary Trees:

Tree Stuff

- Examples of trees that are NOT Binary Trees:

Tree Stuff

- More Binary Tree Goodies:
- A full binary tree:
- Every node, other than the leaves, has two children

Tree Stuff

- More Binary Tree Goodies:
- A complete binary tree:
- Every level, except possibly the last, is completely filled, and all nodes are as far left as possible.

Tree Stuff

- More Binary Tree Goodies:
- The root of the tree is at level 0
- The level of any other node in the tree is one more than the level of its parent
- Total \# of nodes (n) in a complete binary tree:
- $\mathrm{n}=2^{\mathrm{h}+1}-1$ (maximum)
- Height (h) of the tree:
- $h=\log ((n+1) / 2)$
- If we have 15 nodes
- $\mathrm{h}=\log (16 / 2)=\log (8)=3$

Tree Stuff

- Implementation of a Binary Tree:
- A binary tree has a natural implementation using linked storage
- Each node of a binary tree has both left and right subtrees that can be reached with pointers:

```
struct tree_node {
    int data;
    struct tree_node *left_child;
    struct tree_node *right_child;
}
```


Tree Traversals - Depth First

- Traversal of Binary Trees:

- We need a way of zipping through a tree for searching, inserting, etc.
- But how can we do this?
- If you remember...
- Linked lists are traversed from the head to the last node, sequentially
- Can't we just "do that" for binary trees.?.
- NO! There is no such natural linear ordering for nodes of a tree.
- Turns out, there are THREE ways/orderings of traversing a binary tree:
- Preorder, Inorder, and Postorder

Tree Traversals - Depth First

But before we get into the nitty gritty of those three, let's describe..

Tree Traversals - Depth First

- A depth-first search (DFS) explores a path all the way to a leaf before backtracking and exploring another path
- For example, after searching A, then B, then D, the search backtracks and tries another path from B
- Node are explored in the order A B D E H L M N I O P C F G J K Q
- N will be found before J

Tree Traversals - Depth First

- Traversal of Binary Trees:

- There are 3 ways/orderings of traversing a binary tree (all 3 are depth first search methods):
- Preorder, Inorder, and Postorder
- These names are chosen according to the step at which the root node is visited:
- With preorder traversal, the root is visited before its left and right subtrees.
- With inorder traversal, the root is visited between the subtrees.
- With postorder traversal, the root is visited after both subtrees.

Tree Traversals - Preorder

- Preorder Traversal
- the root is visited before its left and right subtrees
- For the following example, we assume we are printing the nodes out
- Code for Preorder Traversal:

```
void preorder (struct tree_node *p) {
        if (p != NULL) {
        printf("%d", p->data);
        preorder(p->left_child);
        preorder(p->right_child);
        }
}
```


Tree Traversals - Preorder

- Preorder Traversal - Example 1
- the root is visited before its left and right subtrees

abc

Tree Traversals - Preorder

- Preorder Traversal - Example 2

Order of Visiting Nodes: a b d ghei c f j

Tree Traversals - Inorder

- Inorder Traversal
- the root is visited between the subtrees
- For the following example, we assume we are printing the nodes out
- Code for Inorder Traversal:

```
void inorder(struct tree_node *p) {
    if (p !=NULL) {
        inorder(p->left_child);
        printf("%d", p->data);
        inorder(p->right_child);
        }
}
```


Tree Traversals - Inorder

Inorder Traversal - Example 1

- the root is visited between the subtrees

bac

Tree Traversals - Inorder

- Inorder Traversal - Example 2

Order of Visiting Nodes: g dhbei af j c

Tree Traversals - Postorder

- Postorder Traversal
- the root is visited after both subtrees
- For the following example, we assume we are printing the nodes out
- Code for Postorder Traversal:

```
void postorder (struct tree_node *p) {
        if (p !=NULL) {
        postorder(p->left_child);
        postorder(p->right_child);
        printf("%d\n", p->data);
        }
}
```


Tree Traversals - Postorder

- Postorder Traversal - Example 1
- the root is visited after both subtrees

b c a

Tree Traversals - Postorder

- Postorder Traversal - Example 2

Order of Visiting Nodes: ghdiebjf ca

Tree Traversals

- Final Traversal Example
- Preorder: abcdfg e
- Inorder: b a fdgce
- Postorder: b fgdec a

Brief Interlude: Human Stupidity

Unfortunately, this was here at UCF near the Student Union.

Picture courtesy of Joe Gravelle.

Breadth-First Traversal

- A breadth-first search (BFS) explores nodes nearest the root before exploring nodes further away
- For example, after searching A, then B, then C, the search proceeds with D, E, F, G
- Node are explored in the order ABCDEFGHIJKL M N O P Q
- J will be found before N

Breadth-First Traversal

Breadth-First Traversal

- Coding the Breadth-First Traversal

- How would you do this?
- Think about it, how would you make this happen?
- SOLUTION:

1) Enqueue the root node.
2) Dequeue a node and examine it.

- If the element sought is found in this node, quit the search and return a result.
- Otherwise enqueue any successors (the direct child nodes) that have not yet been discovered.
- If the queue is empty, every node on the graph has been examined - quit the search and return "not found".
- Repeat from Step 2.

Binary Search Tree

- Binary Search Trees
- We've seen how to traverse binary trees
- But it is not quite clear how this data structure helps us
- What is the purpose of binary trees?
- What if we added a restriction...
- Consider the following binary tree:
- What pattern can you see?

Binary Search Tree

- Binary Search Trees

- What pattern can you see?
- For each node N, all the values stored in the left subtree of N are LESS than the value stored in N.
- Also, all the values stored in the right subtree of N are GREATER than the value stored in N .
- Why might this property be a desireable one?
- Searching for a node is super fast!
- Normally, if we search through n nodes, it takes O(n) time
- But notice what is going on here:
- This ordering property of the tree tells us where to search
- We choose to look to the left or look to the right of a node
- We are HALVING the search space ...O(log n) time

Binary Search Tree

- Binary Search Trees
- Details:
- All of the data values in the left subtree of each node are smaller than the data value in the node (root of the subtree) itself.
- Stated another way, the value of the node itself is larger than the value of every node in its left subtree.
- All of the data values in the right subtree of each node are larger than the data value in the node (root of the subtree) itself.
- Stated another way, the value of the node itself is smaller than the value of every node in its right subtree.
- Both the left and right subtrees of the node are themselves binary search trees.

Binary Search Tree

A Binary Search Tree

Binary Search Tree

- Binary Search Trees
- Details:
- A binary search tree, commonly referred to as a BST, is extremely useful for efficient searching
- Basically, a BST amounts to embedding the binary search into the data structure itself.
- Notice how the root of every subtree in the BST on the previous page is the root of a BST.
- This ordering of nodes in the tree means that insertions into a BST are not placed arbitrarily
- Rather, there is a specific way to insert
- ...and that is for next time

Binary Trees

WASN'T

THAT

HISTORIC!

Daily Demotivator

Binary Trees

Computer Science Department University of Central Florida

COP 3502 - Computer Science I

Binary Tree Traversals - Practice Problems

Binary Tree Traversals - Practice Problems

Practice Problem Solutions - Tree \#1

- Preorder Traversal:
$3,13,22,19,26,54,71,33,14,11,87,8,56,9,75,28,15,10,63,36,7,69$, 59, 68, 44
- Inorder Traversal:
$54,26,71,19,22,11,14,33,8,87,56,13,9,75,3,63,10,15,28,59,69,68$, 7, 36, 44
- Postorder Traversal:
$54,71,26,19,11,14,8,56,87,33,22,75,9,13,63,10,15,59,68,69,7,44$, 36, 28, 3

Practice Problem Solutions - Tree \#2

- Preorder Traversal:
$3,28,36,44,7,69,68,59,15,10,63,13,9,75,22,33,87,56,8,14,11,19$, 26, 71, 54
- Inorder Traversal: $44,36,7,68,69,59,28,15,10,63,3,75,9,13,56,87,8,33,14,11,22,19$, 71, 26, 54
- Postorder Traversal:
$44,68,59,69,7,36,63,10,15,28,75,9,56,8,87,11,14,33,71,54,26,19$, 22, 13, 3

