
Computer Science Department
University of Central Florida

Queues

COP 3502 – Computer Science I

Queues page 2

Queues – An Overview

 Queues:
 Like stacks, Queues are an Abstract Data Type

 They are NOT built into C

 We must define them and their behaviors
 So what is a queue?

 A data structure that stores information in the form of a
typical waiting line

 New items are added at the end of the queue
 Elements are removed from the front of the queue

 So unlike a stack
 A queue is accessible from both ends (front and end)

Queues page 3

Queues – An Overview

 Queues:
 Access Policy:

 The first element that is inserted into the queue is the first
element that will leave the queue
 Therefore, in order for the last element to leave the queue, it

must wait until all elements preceding it are removed
 Known as the “First in, First out” access policy

 FIFO for short
 Real life example: waiting in line to be served

 When a customer arrives, they enter the line at the back
 They wait their turn
 Finally, they get to the front, are served, and exit the line

Queues page 4

Queues – An Overview

 Queues:
 Basic Operations:

 enqueue:
 Inserts and element at the rear of the queue
 O(1) time

 dequeue:
 Removes the element at the front of the queue
 O(1) time

 peek:
 Looks at the element at the front of the queue without actually

removing it
 O(1) time

Queues page 5

Queues – An Overview

 Queues:
 Basic Operations:

 isEmpty:
 Checks to see if the queue is empty
 O(1) time

 isFull:
 Checks to see if the queue is full
 O(1) time

 clear:
 Clears the contents of the queue

 In “queue” order
 From front to back

 O(n) time

Queues page 6

front
START: 2 4 6 8 10

Q

rear

Sequence of operations

Time Operation
1 insert 12
2 remove
3 insert 14
4 insert 16
5 remove

time 1: 2 4 6 8 10 12

time 2: 4 6 8 10 12

time 3: 4 6 8 10 12 14

time 4: 4 6 8 10 12 14 16

time 5: 6 8 10 12 14 16

FIFO Nature of a Queue

Queues page 7

Queues: Array Implementation

 Queues:
 Array Implementation:

 How would you implement a queue using an array?

 Think of what “stuff” you would need…

 Other than the actual array, what else do you need?

 Remember, you need to enqueue and dequeue
 Meaning:
 You need to ALWAYS know where the front and back of the

queue are.

Queues page 8

Sequence of operations

Time Operation
1 remove
2 insert 12
3 remove
4 remove
5 remove
6 remove
7 remove

front
time 5:

rear

10 12

front
start: 2 4 6 8 10

Q

rear

front
time 1: 4 6 8 10

rear

front
time 3: 6 8 10 12

rear

front
time 4: 8 10 12

rear

Notice that the
array now has
room to add
elements to the
queue.

time 2:
front

4 6 8
rear

10 12

Queues: Array Implementation
“brute force” method

Queues page 9

Sequence of operations

Time Operation
1 remove
2 insert 12
3 remove
4 remove
5 remove
6 remove
7 remove

front
time 5:

rear

10 12

front
start: 2 4 6 8 10

Q

rear

Queues: Array Implementation

front/rear
time 6: 12

front
time 7:

rear

“brute force” method

Queues page 10

Queues: Array Implementation

 Queues:
 What is wrong with the last example?

 enqueues run in O(1) time.
 This is a GOOD thing!

 But look at the dequeue
 How long does a dequeue take?

 The dequeue itself takes O(1) time
 However, after the first node is removed, ALL nodes, that

remain in the queue after the dequeue, must be moved
forward one position in the array

 Possibly n elements have to move after one dequeue
 This is O(n) time per deletion!
 And we know, conceptually, a dequeue should be O(1)

“brute force” method

Queues page 11

Queues: Array Implementation (2)

 Queues:
 How can we do better?
 Well, we want to avoid moving all items when a

dequeue occurs
 But if we don’t move the individual elements…
 That means we MUST move the front and back

“pointers” to those items

 An example makes this clear…

Queues page 12

Queues: Array Implementation (2)
Sequence of operations

Time Operation
1 remove
2 insert 12
3 remove
4 remove
5 remove
6 remove
7 remove

front
time 5:

rear

10 12

front
time 2:

rear

4 6 8 10 12

front
start: 2 4 6 8 10

Q

rear

front
time 1: 4 6 8 10

rear

front
time 3: 6 8

rear

10 12

front
time 4: 8

rear

10 12

Notice that the
queue now
appears to be full
even though there
are locations
available in the
array!

Queues page 13

Queues: Array Implementation (2)
Sequence of operations

Time Operation
1 remove
2 insert 12
3 remove
4 remove
5 remove
6 remove
7 remove

front
time 5:

rear

10 12

front
start: 2 4 6 8 10

Q

rear

time 6:
front/rear

12

front
time 7:

rear

Even Worse:
The queue now
appears full even
though there are
NO items in the
array!

Queues page 14

Queues: Array Implementation (2)

 Queues:
 What is wrong with the last example?

 The problem: we end up with wasted cells
 As the front moves towards the rear (when dequeues

occur), we have empty, useless cells in the array

 So we avoided the n moves when we dequeue
 We did so by simply moving the reference to front
 But in the process we have wasted space

 How can we do better?
 We view the array as if it were circular

Queues page 15

Queues: Array Implementation (3)

 Queues:
 Circular Array Implementation

 Circular arrays are a very common way of implementing
an array-based queue

 What is a circular array?
 It is a regular array
 We simply “view” it as being circular

 In a circular implementation, the queue is considered to
be full whenever the front of the queue immediately
precedes the rear of the queue in the counterclockwise
direction.

 The examples on the following pages should help you to
visualize a “circular” array.

Queues page 16

2 15 11 10 6 84
front rear

normal array implementation: queue is full

6 8 4 2 15 1110
frontrear

circular array implementation: queue is full

15

2

48

6

10

11

rear front

visualization of a queue
implemented as a circular array

Queues: Array Implementation (3)

Queues page 17

Queues: Array Implementation (3)

 Queues:
 Circular Array Implementation

 This implementation allows us to keep the elements in
their respective “cells” of the array
 We don’t need to move n elements during dequeues
 AND we also don’t have wasted space!

 The circular “view” of the array allows us to “wrap”
around the array
 Assume the length of the array is SIZE
 It is NOT the case that the rear most stop at index[SIZE-1]

 meaning, the last element
 Rather, since the array wraps around, the front could be at a

greater index than the index of the rear!

Queues page 18

Queues: Circular Array
Implementation
 Queues:

 Circular Array Implementation
 The next several slides illustrate the operation of a

circular array based implementation of a queue.
 The normal implementation (brute-force) is also shown

for comparative purposes.
 However, remember that the brute force method is

extremely inefficient due to the amount of data
movement required by dequeue operations.

Queues page 19

Queues: Circular Array
Implementation
 Queues:

 Circular Array Implementation
 The scenario begins at some point in time before which

other enqueue and dequeue operations have occurred
on the queue.

 Our scenario begins with some elements already in the
queue.
 As you can see on the next page, these elements were

enqueued in the order of: 2, 4, and 8.
 The scenario continues by enqueuing 6, enqueuing 10,

dequeue, enqueuing 18, dequeue, dequeue, dequeue,
enqueuing 9, dequeue, dequeue, and finally one last
dequeue which empties the queue at this point.

Queues page 20

visualization of a queue
implemented as a circular array

after insertion of element 6

6

4

2

rear

front

8

Enqueue element 6

4 82
front rear

before

normal array implementation

4 8 62
front rear

after

2 4 8
front rear

before

circular array implementation

2 4 8 6
front rear

after

Queues: Circular Array
Implementation

Queues page 21

Enqueue element 10

4 8 62
front rear

before

normal array implementation

4 8 6 102
front rear

after

2 4 8 6
front rear

before

circular array implementation

2 4 8 610
frontrear

after

Queues: Circular Array
Implementation

visualization of a queue
implemented as a circular array

after insertion of element 10

6

4

2

rear

front

810

Queues page 22

dequeue

4 8 6 102
front rear

before

normal array implementation

8 6 104
front rear

after

2 4 8 610
frontrear

before

circular array implementation

4 8 610
frontrear

after

Queues: Circular Array
Implementation

visualization of a queue
implemented as a circular array

after dequeue operation

6

4

rear

front

810

Queues page 23

Enqueue element 18

8 6 104
front rear

before

normal array implementation

8 6 10 184
front rear

after

4 8 610
frontrear

before

circular array implementation

18 4 8 610
frontrear

after

Queues: Circular Array
Implementation

visualization of a queue
implemented as a circular array

after insertion of element 18

6

4
rear

front

810

18

Queues page 24

dequeue

8 6 10 184
front rear

before

normal array implementation

6 10 188
front rear

after

18 4 8 610
frontrear

before

circular array implementation

18 8 610
frontrear

after

Queues: Circular Array
Implementation

visualization of a queue
implemented as a circular array

after dequeue operation

6

rear

front
810

18

Queues page 25

dequeue

6 10 188
front rear

before

normal array implementation

10 186
front rear

after

18 8 610
frontrear

before

circular array implementation

18 610
frontrear

after

Queues: Circular Array
Implementation

visualization of a queue
implemented as a circular array

after dequeue operation

6

rear

front

10

18

Queues page 26

dequeue

10 186
front rear

before

normal array implementation

1810
front rear

after

18 610
frontrear

before

circular array implementation

1810
front rear

after

Queues: Circular Array
Implementation

visualization of a queue
implemented as a circular array

after dequeue operation

rear

front

10

18

Queues page 27

Enqueue element 9

1810
front rear

before

normal array implementation

18 910
front rear

after

1810
front rear

before

circular array implementation

18 910
front rear

after

Queues: Circular Array
Implementation

visualization of a queue
implemented as a circular array

after insertion of element 9

rear

front

10

18

9

Queues page 28

dequeue

18 910
front rear

before

normal array implementation

918
front rear

after

18 910
front rear

before

circular array implementation

18 9
front rear

after

Queues: Circular Array
Implementation

visualization of a queue
implemented as a circular array

after dequeue operation

rear

front

18

9

Queues page 29

dequeue

918
front rear

before

normal array implementation

9
front/rear

after

18 9
front rear

before

circular array implementation

9
front/rear

after

Queues: Circular Array
Implementation

visualization of a queue
implemented as a circular array

after dequeue operation

rear
front

9

Queues page 30

dequeue – queue empties!

9
front/rear

before

normal array implementation

front/rear

after

9
front/rear

before

circular array implementation
front/rear

after

Queues: Circular Array
Implementation

visualization of a queue
implemented as a circular array

after dequeue operation

rear
front

9

Queues page 31

 Queues:
 Circular Array Implementation

 So this works great in pictures
 But think about something…

 How did we modify the position (index) of front and rear?
 Did we just increment the front/rear indices as needed?

 Meaning, did we simply increment the index of rear every time
an enqueue occurs?

 And did we simply increment the index of front every time a
dequeue occurs?

 In a normal array, this is fine.
 However, this is a circular array, and we must pay attention!
 Simply incrementing will not cut it!

Queues: Circular Array
Implementation

Queues page 32

 Queues:
 Circular Array Implementation

 How did we modify the position (index) of front and rear?
 We find (and then modify) the index of front and rear using

modulo arithmetic.
 This implements the circular nature of this array

 Ex: suppose we have the situation below (also from page 26)

 If we dequeue, the front will need to refer to the ‘10’ in index 0!
 So how do we make this happen?
 Can we simply increment front?

Queues: Circular Array
Implementation

18 610
frontrear

before

Queues page 33

 Queues:
 Circular Array Implementation

 But think about something…
 Ex: suppose we have the situation below (also from page 26)

 If we dequeue, we usually simply increment the front
 But if we did so, this would make front refer to index 7
 BUT this is out of bounds!!!

 However, (front + 1) mod 7 = 0
 This is PRECISELY the index we want!

Queues: Circular Array
Implementation

18 610
frontrear

before

The ‘7’ here refers to
the size of the array

Queues page 34

 Queues:
 Circular Array Implementation

 But think about something…
 Ex: suppose we have the situation below (also from page 26)

 So how do we get front to “point” to index 0?
 We need to use mod!
 We increment front and then mod it by the queue size
 front = (front + 1) mod 7

 So now the new front refers to index 0.
 This is PRECISELY the index we wanted!

Queues: Circular Array
Implementation

18 610
frontrear

before

Queues page 35

 Circular Array Implementation
 Another method:

 We don’t need to save the index for the rear.
 Why?
 Because if we know the index to the front
 AND if we know the number of elements
 we can quickly determine the new enqueue position

 Ex: let’s say front was at index 7 and there are 2 elements
 This means the rear would be at index 8
 And the NEW enqueue position would be index 9

 So we see that the NEW enqueue position is found by simply
adding the index of the front and the number of elements

 But we need to take care of wraparound…

Queues: Circular Array
Implementation

Queues page 36

 Circular Array Implementation
 Another method:

 Assume we have a queue of size 10
 From index 0 to index 9

 The front is currently index 4
 And there are 6 elements already in the queue

 The name of this array is myQueue
 And the next operation is enqueue(g)

 Remember, enqueue is a function that we write in the program
 So this ‘g’ is sent over to the enqueue function as “char val”

Queues: Circular Array
Implementation

a b c
front

d fe

Queues page 37

 Circular Array Implementation
 Another method:

 Assume we have a queue of size 10
 From index 0 to index 9

 The front is currently index 4
 And there are 6 elements already in the queue

 We know that the next enqueue will go at index 0
 But how do we do this in code (using mod)?
 myQueue[(front + numElements)%SIZE] = val
 myQueue[(4 + 6) % 10] = val
 myQueue[0] = val

Queues: Circular Array
Implementation

a b c
front

d feg

Queues page 38

 Queues:
 Circular Array Implementation

 Using Dynamically Allocated Arrays
 Before we get to the code, there is one other important point to

make
 If we use dynamically allocated arrays for queues, that is fine
 Remember the steps needed when the array is full:
1) Allocated a new, larger array (double the size)
2) Copy the elements from the old array to the new one
3) Deallocate the space for the old array
4) Point to the new array appropriately

 Step 2 now becomes a bit complicated…

Queues: Circular Array
Implementation

Queues page 39

 Queues:
 Circular Array Implementation

 Using Dynamically Allocated Arrays
2) Copy the elements from the old array to the new one
 We can no longer loop through the elements, one by one, and

copy them into the corresponding array element in the new
array

 Why?
 Because of the wraparound issue
 Consider the following scenario:

 The array is full and we want to enqueue(12)

Queues: Circular Array
Implementation

3 4 56
front

Queues page 40

 Queues:
 Circular Array Implementation

 Using Dynamically Allocated Arrays
2) Copy the elements from the old array to the new one
 Consider the following scenario:

 The array is full and we want to enqueue(12)
 If we simply copy the contents, we come up with:

 But where do ‘front’ and ‘rear’ go?
 Where should 6 really be in this array???

Queues: Circular Array
Implementation

3 4 56
front

3 4 56

Queues page 41

 Queues:
 Circular Array Implementation

 Using Dynamically Allocated Arrays
2) Copy the elements from the old array to the new one
 So what is the problem:
 We see that the indices for the wraparound are only accurate

for one array size!
 They don’t work when copied to larger array sizes.

 What we need to do is reset front to 0
 Then copy the elements into the array accordingly

Queues: Circular Array
Implementation

5 6 3 124
front

Queues page 42

 Queues:
 Circular Array Implementation

 Using Dynamically Allocated Arrays
2) Copy the elements from the old array to the new one

 Here’s how we do this in code:

Queues: Circular Array
Implementation

5 6 3 124
front

3 4 56
front

for (i=front, j=0; i<ARRAY_SIZE; i++, j++)
temp[j] = values[i];

for (i=0; i<front; i++, j++)
temp[j] = values[i];

before

after

Queues page 43

Brief Interlude: Human Stupidity

Queues page 44

 Circular Array Code:
 Here is our queue struct:

 Contents:
 An array for the elements of the queue
 An integer for the index into the front of the queue
 An integer for the number of elements in the queue
 An integer representing the current size of the queue

Queues: Circular Array
Implementation

struct queue {
int* elements;
int front;
int numElements;
int queueSize;

};

Queues page 45

 Circular Array Code:
 Here are the functions used in the code:

 void init(struct queue* qPtr);

 int enqueue(struct queue* qPtr, int val);

 int dequeue(struct queue* qPtr);

 int empty(struct queue* qPtr);

 int peek(struct queue* qPtr);

 In main, we make the queue using a pointer of
type struct queue
 We then allocate the space accordingly and call ‘init’

Queues: Circular Array
Implementation

Queues page 46

 Circular Array Code:
 init:

 Notes:
 This function is straightforward
 We must allocate the space for the actual array of

elements
 Then initialize all other struct members

Queues: Circular Array
Implementation

void init(struct queue* qPtr) {
// The front index is 0, as is the number of elements.
qPtr->elements = (int*)malloc(sizeof(int)*INIT_SIZE);
qPtr->front = 0;
qPtr->numElements = 0;
qPtr->queueSize = INIT_SIZE;

}

Queues page 47

 Circular Array Code:
 enqueue:

 Here is the function header:

 So we send over two things:
 The pointer to the queue
 and the new value to enter into the rear of the queue

 The function then tries to insert “val” into the appropriate
spot of the queue

Queues: Circular Array
Implementation

int enqueue(struct queue* qPtr, int val) {
// body of function

}

Queues page 48

 Circular Array Code:
 enqueue:

 Two scenarios:
1) IF the queue is NOT full…meaning there is room
 We simply insert “val” to the correct spot
 NOTE:

 We must use mod to take care of wraparound
 We reference the new location with:
 (front + numElements) % queueSize

2) ELSE, if the queue is full
 We need to realloc
 Copy the values correctly
 And then insert “val” correctly taking care of wraparound

Queues: Circular Array
Implementation

Queues page 49

 Circular Array Code:
 enqueue:

 Two scenarios:
1) IF the queue is NOT full…meaning there is room

Queues: Circular Array
Implementation

int enqueue(struct queue* qPtr, int val) {
int i;
if (qPtr->numElements != qPtr->queueSize) {

qPtr->elements[(qPtr->front+qPtr->numElements)%qPtr->queueSize] = val;

(qPtr->numElements)++;
return 1;

}

else {
//...more code here

}
}

Queues page 50

 Circular Array Code:
 enqueue:

 Two scenarios:
2) ELSE, if the queue is full

Queues: Circular Array
Implementation

int enqueue(struct queue* qPtr, int val) {
else {

realloc(qPtr->elements, (qPtr->queueSize)*sizeof(int)*2);
for (i=0; i<=qPtr->front-1; i++)

qPtr->elements[i+qPtr->queueSize] = qPtr->elements[i];

qPtr->elements[i+qPtr->queueSize] = val;
(qPtr->queueSize) *= 2;
(qPtr->numElements)++;
return 1;

}
}

Queues page 51

 Circular Array Code:
 dequeue:

 This one is a bit easier
 If the queue is empty, we immediately return

 Can’t dequeue from an empty queue!
 ELSE

 We store the value that we want to return
 We adjust the index to the front of the queue accordingly
 We adjust the numElements struct member

 Make it one fewer since we are dequeuing
 Finally, we return the dequeued value

Queues: Circular Array
Implementation

Queues page 52

 Circular Array Code:
 dequeue:

Queues: Circular Array
Implementation

int dequeue(struct queue* qPtr) {
int retval;

// Empty case.
if (qPtr->numElements == 0)

return EMPTY;

retval = qPtr->elements[qPtr->front];

qPtr->front = (qPtr->front + 1)% qPtr->queueSize;

(qPtr->numElements)--;

return retval;
}

Queues page 53

 Circular Array Code:
 empty:

 Notes:
 This function is straightforward
 Simply returns a 1 if the queue is empty

 If numElements is equal to 0

Queues: Circular Array
Implementation

int empty(struct queue* qPtr) {
return qPtr->numElements == 0;

}

Queues page 54

 Circular Array Code:
 peek:

 Notes:
 If there are elements in the queue

 The front element is returned (but not dequeued)
 Else if the queue is empty

 We simply return accordingly

Queues: Circular Array
Implementation

int peek(struct queue* qPtr) {
if (qPtr->numElements != 0)

return qPtr->elements[qPtr->front];
else

return EMPTY;
}

Queues page 55

Queues: Linked Lists Implementation

 Queues:
 Linked Lists Implementation:

 What would be the problem with a typical linked list
implementation?

 Either the enqueue or dequeue operation would take
O(n) time

 Why?
 Because we need access to BOTH ends of the queue
 And a linked lists starts at the front (or some end)
 So if we use linked lists:

 We MUST maintain pointers for both the front AND the rear
(last node) of the list

Queues page 56

Queues: Linked Lists Implementation

 Queues:
 Linked Lists Implementation:

 Consider the following operations:
 enqueue
1) Create a new node and store the inserted value into it.
2) Link the back node's next pointer to this new node.
3) Move the back node to point to the newly added node.

 dequeue
1) Store a temporary pointer to the beginning of the list
2) Move the front pointer to the next node in the list
3) Free the memory pointed to by the temporary pointer.

Queues page 57

Queues: Linked Lists Implementation

 Queues:
 Linked Lists Implementation:

 Consider the following operatios:
 front
1) Directly access the data stored in the first node through

the front pointer to the list.

 empty
1) Check if both pointers (front, back) are null.

 Code for both array and linked list implementations are
on the website under sample programs.

Queues page 58

Queues

WASN’T
THAT

SUPERB!

Queues page 59

Daily Demotivator

Computer Science Department
University of Central Florida

Queues

COP 3502 – Computer Science I

	Queues
	Queues – An Overview
	Queues – An Overview
	Queues – An Overview
	Queues – An Overview
	
	Queues: Array Implementation
	
	
	Queues: Array Implementation
	Queues: Array Implementation (2)
	Queues: Array Implementation (2)
	Queues: Array Implementation (2)
	Queues: Array Implementation (2)
	Queues: Array Implementation (3)
	
	Queues: Array Implementation (3)
	Queues: Circular Array Implementation
	Queues: Circular Array Implementation
	
	
	
	
	
	
	
	
	
	
	
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Brief Interlude: Human Stupidity
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Queues: Linked Lists Implementation
	Queues: Linked Lists Implementation
	Queues: Linked Lists Implementation
	Queues
	Daily Demotivator
	Queues

