Stacks:
Implementation in C

r | Computer Science Department
. University of Central Florida

COP 3502 — Computer Science |

Stacks — An Overview

Stacks:

Stacks are an Abstract Data Type
They are NOT built into C

We must define them and their behaviors

So what is a stack?

A data structure that stores information in the form of a
stack.

— Consists of a variable number of homogeneous elements
l.e. elements of the same type

Stacks: Implementation in C page 2

A

Stacks — An Overview L

Stacks:

Access Policy:

The access policy for a stack is simple: the first element
to be removed from the stack is the last element that was
placed onto the stack

The main idea is that the last item placed on to the stack is the
first item removed from the stack

Known as the “Last in, First out” access policy
—— LIFO for short
The classical example of a stack is cafeteria trays.
New, clean trays are added to the top of the stack.

and trays are also taken from the top
So the last tray in is the first tray taken out

Stacks: Implementation in C page 3

Stacks — An Overview

Stacks:

Basic Operations:

PUSH:
This PUSHes an item on top of the stack

POP:
This POPs off the top item in the stack and returns it

Other important tidbit:

The end of the stack,
where PUSHes and POPs occuir,

IS usually referred to as the TOP of the stack

Stacks: Implementation in C page 4

Stacks — An Overview

Stacks:

Basic Operations:

PUSH:
This PUSHes an item on top of the stack

POP:
This POPs off the top item in the stack and returns it

Other important tidbit:

The end of the stack,
where PUSHes and POPs occuir,

IS usually referred to as the TOP of the stack

Stacks: Implementation in C page 5

Stacks — An Overview

Stacks:

Other useful operations:

empty:
Typically implemented as a boolean function
Returns TRUE if no items are in the stacck

full:
Returns TRUE if no more items can be added to the stack
In theory, a stack should NEVER become full
— Actual implementations do have limits on the number of
elements a stack can store
top:

Simply returns the value at the top of the stack without actually
popping the stack.

Stacks: Implementation in C page 6

Stacks: Implementation in C

Implementation of Stacks in C:

As discussed on the previous lecture, there are
two obvious was to implement stacks:

Using arrays
Using linked lists

We will go over both...

Stacks: Implementation in C

page 7

Stacks: Implementation in C

Array Implementation of Stacks:
What components will we need to store?

The array storing the elements
The actual stack

What else?

An index to the top of the stack

We assume the bottom of the stack is index O
Meaning, the 1st element will be stored in index 0

and we move up from there

Stacks: Implementation in C page 8

Stacks: Implementation in C

Array Implementation of Stacks:
Here Is the struct (skeleton) for our stack:

struct stack {
int 1tems[SIZE];

int top;

SIZE clearly represents the max number of items
In the stack

If the stack becomes full, at that point, the top item
will be stored at index ‘SIZE-1’

Stacks: Implementation in C page 9

Stacks: Implementation in C

Array Implementation of Stacks:

Here are the functions we will need to control our
stack behavior:

void 1nitialize(struct stack* stackPtr);

InNt empty(struct stack* stackPtr);

int full(struct stack* stackPtr);

INt push(struct stack* stackPtr, iInt value);
INt pop(struct stack* stackPtr);

Int top(struct stack* stackPtr);

Stacks: Implementation in C page 10

Stacks: Implementation in C

Array Implementation of Stacks:
initialize:
The tnitial1ze function has one line of code
It sets the “top” equal to -1
Remember, the first element will be at index O
So ifthe topis setto -1
You know that the stack is empty

= Here’'s the code:

void 1nitialize(struct stack* stackPtr) {

stackPtr->top = -1;

}

Stacks: Implementation in C page 11

Stacks: Implementation in C

Array Implementation of Stacks:
empty:

The empty function simply checks if the stack has no
elements

Based on what you know thus far, how would you
determine if the stack is empty?

If the top currently equals -1
Here’s the code:

INt empty(struct stack* stackPtr) {
return (stackPtr->top == -1);

}

Stacks: Implementation in C page 12

Stacks: Implementation in C

Array Implementation of Stacks:
full:

The Full function checks to see if the stack is full

How would we do this?

Remember, SIZE is the max # of elements in the stack
Item 1 goes at index O
If the stack is full, the top item will be at index ‘SIZE-1’

Here's the code:

int full(struct stack* stackPtr) {
return (stackPtr->top == SIZE - 1);

}

Stacks: Implementation in C page 13

Stacks: Implementation in C

Array Implementation of Stacks:
push:

Remember, we can only push if the stack is not full
Meaning, if there is room to push

So if the stack is full
We return O showing the push could not be done

If there IS room

we simply copy the value into the next location for the top of
— the stack

Then we adjust the top accordingly
Finally, we return 1 showing the push was successful

Stacks: Implementation in C page 14

S

Stacks: Implementation in C

Array Implementation of Stacks:
push:

To push an element, we simply copy the value into the
next location for the top of the stack

Then we adjust the top accordingly
Here’s the code:

Int push(struct stack* stackPtr, int value) {
1T (full(stackPtr))
return O;
stackPtr->i1tems|stackPtr->top+1] = value;

(stackPtr->top)++;
return 1;

Stacks: Implementation in C page 15

Stacks: Implementation in C

Array Implementation of Stacks:
pop:

Remember, we can only pop if the stack is not empty
Meaning, there is at least one element to pop

So if the stack is empty
We return -1 showing that we cannot pop (stack empty)

If the stack has at least one element:

We save the value at the top of the stack into a temporary
— variable

We change the value for top
Meaning if top was 20 before the pop, it will now be 19
Meaning it will now reference index 19

Finally, we return the temporary variable (the popped off top)

Stacks: Implementation in C page 16

S

Stacks: Implementation in C

Array Implementation of Stacks:
pop:

To pop an element, we simply copy the top into a

temporary variable, adjust the top accordingly, and return
the temporary variable.

Here’'s the code:

Int pop(struct stack* stackPtr) {
int retval;
SE— 1T (empty(stackPtr))
return -1;

retval = stackPtr->i1tems[stackPtr->top];
(stackPtr->top)--;
return retval;

Stacks: Implementation in C page 17

Stacks: Implementation in C

Array Implementation of Stacks:
top:
The top function is very similar to pop

Remember, we can only check for the top of the stack if
the stack is not empty

Meaning, there is at least one element in the stack
So if the stack is empty

We return -1 showing that there is no top to check for
If the stack has at least one element:

We simply return the topmost element

Stacks: Implementation in C page 18

=7

Stacks: Implementation in C

Array Implementation of Stacks:
top:
Simply returns the top item in the stack

Here’'s the code:

Int top(struct stack* stackPtr) {
1T (empty(stackPtr))
return -1;

return stackPtr->i1tems[stackPtr->top];

Stacks: Implementation in C page 19

Stacks: Implementation in C

Array Implementation of Stacks:

Here the link to this code on the site:

http://www.cs.ucf.edu/courses/cop3502/spr201
1/programs/stacksqueues/stack.c

Stacks: Implementation in C page 20

http://www.cs.ucf.edu/courses/cop3502/spr2011/programs/stacksqueues/stack.c�
http://www.cs.ucf.edu/courses/cop3502/spr2011/programs/stacksqueues/stack.c�

Y
Brief Interlude: Human Stupidity

Stacks: Implementation in C page 21

Stacks: Implementation in C

Linked Lists Implementation of Stacks:
We essentially use a standard linked list
But we limit the functionality of a linked list

Thus creating the behavior required of a stack

A push is simply designated as inserting into the
front of the linked list

A pop would be deleting the front node

So we basically create just one struct for the stack
It acts similar to the struct defined for use with linked lists

Stacks: Implementation in C page 22

Stacks: Implementation in C

Linked Lists Implementation of Stacks:
So each node will be an element of the stack
Each node has a data value

Each node also has a next
We simply push (insert at front)

And pop (delete the front node)

Stacks: Implementation in C page 23

Stacks: Implementation in C

Linked Lists Implementation of Stacks:
Here’s the struct for the stack (for each node)

struct stack {
int data;

struct stack *next;

Notice that we do not have a ‘top’
Why?
The top will ALWAYS be the first node

And we don’t need to worry about the size getting too
large since this is a linked list (in heap memory)

Stacks: Implementation in C page 24

Stacks: Implementation in C

Linked Lists Implementation of Stacks:

Here are the functions we will need to control our
stack behavior:

void Init(struct stack **front);

Int empty(struct stack *front);

INt push(struct stack **front, Int num);
struct stack* pop(struct stack **front);
Int top(struct stack *front);

Stacks: Implementation in C page 25

Stacks: Implementation in C

Linked Lists Implementation of Stacks:
initialize:
The initiali1ze function has one line of code
It simply sets the pointer of the list to NULL

Specifying that the list is empty at this point
Here’s the code:

— void 1nit(struct stack **front) {
*front = NULL;

}

Stacks: Implementation in C page 26

S

Stacks: Implementation in C

Linked Lists Implementation of Stacks:
empty:
The lists is empty when the main list pointer is NULL
So if front equals NULL

Return 1 showing the list is empty
Else, return O showing that the list is not empty

Here’'s the code:

S— Int empty(struct stack *front) {
iIfT (front == NULL)
return 1;
else

return O;

Stacks: Implementation in C page 27

Stacks: Implementation in C

Linked Lists Implementation of Stacks :
push:

Remember, push means that we add a new node at the
front of the list

So we need to allocate this node
We need to save the data value into this node

We then need to update pointers accordingly
The new node will now be the FIRST node

So the address of the current front node needs to be saved
into the next of this new node

Allowing the new node to point to the previous first node
The pointer to the front of the list needs to get updated

Finally, we return 1 to show a successful push

Stacks: Implementation in C page 28

SV

Stacks: Implementation in C

Linked Lists Implementation of Stacks :
push:

Here’'s the code:

int push(struct stack **front, i1nt num) {
struct stack *temp;
temp = (struct stack *)malloc(sizeof(struct stack));
iIT (temp = NULL) {
temp->data = num;
temp->next = *front;

— *front = temp;
return 1;

return O;

Stacks: Implementation in C page 29

Stacks: Implementation in C

Linked Lists Implementation of Stacks :
pop:

Assuming that there is at least one node to pop
We make a temp pointer to point to the front node
The node we will pop

We then update our pointers accordingly
The 2"d node now becomes the first node

Finally, we return the address of the temp pointer

Stacks: Implementation in C page 30

S

Stacks: Implementation in C

Linked Lists Implementation of Stacks :
pop:
Here’s the code:

struct stack* pop(struct stack **front) {
struct stack *temp;
temp = NULL;

iIf (Cfront = NULL) {
temp = (*front);

*front = (*front)->next;
temp -> next = NULL;

}

return temp;

Stacks: Implementation in C page 31

Stacks: Implementation in C

Linked Lists Implementation of Stacks :
top:
Assuming that there is at least one node
We simply return the data value of that node

Otherwise,
If there is no nodes

We return -1 showing that the list is empty

Stacks: Implementation in C page 32

S

Stacks: Implementation in C

Linked Lists Implementation of Stacks :
top:
Here’s the code:

int top(struct stack *front) {
iIf (front = NULL) {
return front->data;

}

else
return -1;

Stacks: Implementation in C page 33

Stacks: Implementation in C

Linked Lists Implementation of Stacks:

Here the link to this code on the site:

http://www.cs.ucf.edu/courses/cop3502/spr201
1/programs/stacksqueues/stackll.c

Stacks: Implementation in C page 34

http://www.cs.ucf.edu/courses/cop3502/spr2011/programs/stacksqueues/stackll.c�
http://www.cs.ucf.edu/courses/cop3502/spr2011/programs/stacksqueues/stackll.c�

Stack Application(s)

WASN'T
THAT
SPLENDID!

Daily Demotivator

THERE 15 NO GREATER JOY THAN SOARNG HIGH ON THE WINGS OF YOUR DREAMS,

EXCEFT MAYRE THE JOY OF WATCHING A DREAMER WHO HAS MOWHERE TO LAMD
BUT IN THE OCEAN OF REALITY.

Stacks: Implementation in C

page 36

Stacks:
Implementation in C

r | Computer Science Department
. University of Central Florida

COP 3502 — Computer Science |

	Stacks: Implementation in C
	Stacks – An Overview
	Stacks – An Overview
	Stacks – An Overview
	Stacks – An Overview
	Stacks – An Overview
	Stacks: Implementation in C
	Stacks: Implementation in C
	Stacks: Implementation in C
	Stacks: Implementation in C
	Stacks: Implementation in C
	Stacks: Implementation in C
	Stacks: Implementation in C
	Stacks: Implementation in C
	Stacks: Implementation in C
	Stacks: Implementation in C
	Stacks: Implementation in C
	Stacks: Implementation in C
	Stacks: Implementation in C
	Stacks: Implementation in C
	Brief Interlude: Human Stupidity
	Stacks: Implementation in C
	Stacks: Implementation in C
	Stacks: Implementation in C
	Stacks: Implementation in C
	Stacks: Implementation in C
	Stacks: Implementation in C
	Stacks: Implementation in C
	Stacks: Implementation in C
	Stacks: Implementation in C
	Stacks: Implementation in C
	Stacks: Implementation in C
	Stacks: Implementation in C
	Stacks: Implementation in C
	Stack Application(s)
	Daily Demotivator
	Stacks: Implementation in C

