
Computer Science Department
University of Central Florida

Stacks & Their Applications
(Postfix/Infix)

COP 3502 – Computer Science I

Stacks & Their Applications page 2

Outline

 Stacks
 What are they and how they work

 Stack Applications
 Infix to Postfix conversion
 Evaluation of Postfix expressions

Stacks & Their Applications page 3

Stacks – An Overview

 Abstract Data Type (ADT):
 What is an Abstract Data Type?

 To answer this, let us ask the negative of this:
 What is NOT an Abstract Data Type (in C)?

 int
 int is a built-in type in the C language

 double
 double is a built-in type in the C language

 There are certainly many others we can list
 These data types are already built into the language.

Stacks & Their Applications page 4

Stacks – An Overview

 Abstract Data Type (ADT):
 So again, what is an Abstract Data Type?

 It is a data type that is NOT built into the language
 It is a data type that we will “build”

 We will specify what it is, how it is used, etc.

 It is often defined in terms of its behavior rather than
its implemented representation

 Nice definition from Wikipedia:
 An abstract data type is defined indirectly, only by the

operations that may be performed on it (i.e. behavior)
 http://en.wikipedia.org/wiki/Abstract_data_type

http://en.wikipedia.org/wiki/Abstract_data_type�

Stacks & Their Applications page 5

Stacks – An Overview

 Stacks:
 Stacks are an Abstract Data Type

 They are NOT built into C

 We must define them and their behaviors
 So what is a stack?

 A data structure that stores information in the form of a
stack.

 Consists of a variable number of homogeneous elements
 i.e. elements of the same type

Stacks & Their Applications page 6

Stacks – An Overview

 Stacks:
 Access Policy:

 The access policy for a stack is simple: the first element
to be removed from the stack is the last element that was
placed onto the stack
 The main idea is that the last item placed on to the stack is the

first item removed from the stack
 Known as the “Last in, First out” access policy

 LIFO for short
 The classical example of a stack is cafeteria trays.

 New, clean trays are added to the top of the stack.
 and trays are also taken from the top
 So the last tray in is the first tray taken out

Stacks & Their Applications page 7

Stacks – An Overview

 Stacks:
 Basic Operations:

 PUSH:
 This PUSHes an item on top of the stack

 POP:
 This POPs off the top item in the stack and returns it

 Other important tidbit:
 The end of the stack,

 where PUSHes and POPs occur,
 is usually referred to as the TOP of the stack

Stacks & Their Applications page 8

Stacks – An Overview

Top

6

Element to be inserted into S

(before push) (after push)

24

13

7

22

9

Top

Stack S Stack S

6

24

13

7

22

9

 PUSH Operation:

Stacks & Their Applications page 9

 POP Operation:

Stacks – An Overview

6

24

13

7

22

9

Top

Element removed

6

(stack after pop)

24

13

7

22

9

Top

(stack before pop)

6

Stacks & Their Applications page 10

Stacks – An Overview

 Stacks:
 Other useful operations:

 empty:
 Typically implemented as a boolean function
 Returns TRUE if no items are in the stacck

 full:
 Returns TRUE if no more items can be added to the stack
 In theory, a stack should NEVER become full
 Actual implementations do have limits on the number of

elements a stack can store
 top:

 Simply returns the value at the top of the stack without actually
popping the stack.

Stacks & Their Applications page 11

Stacks – An Overview

 Stacks:
 Other useful operations:

 Note:
 Each of those operations ACCESS the stack

 But they do NOT modify the stack
 A PUSH can only be done if the stack isn’t full
 A POP can only be done on a non-empty stack

 Implementation of a stack:
 Can be done using both static and dynamic memory

 Array or a linked list
 Implemented as an array, the stack could possibly become full
 As a linked list, this is MUCH LESS LIKELY to occur

 We will cover detailed implementations NEXT TIME.

Stacks & Their Applications page 12

Using Stacks

 So when is stack useful?
 When data needs to be stored and then retrieved

in reverse order
 There are several examples/applications outside

the scope of this class
 Be patient and they will come up

 For now, we go over two classical examples…
 This examples help facilitate learning about stacks and

their operations.

Stacks & Their Applications page 13

Stack Application(s)

 Evaluating Arithmetic Expressions
 Consider the expression 5 * 3 + 2 + 6 * 4
 How do we evaluate this?

 DUH
 No, but seriously, think about what happens during the

evaluation
 We multiply 5 and 3 to get 15, and then we add 2 to

that result to get 17.
 Then we store that off in our head somewhere.
 We then multiply 6 and 4 to get 24
 Lastly, we then retrieve the stored value (17) and add

it to 24 to get the result…41.

Stacks & Their Applications page 14

Stack Application(s)

 Evaluating Arithmetic Expressions
 Consider the expression 5 * 3 + 2 + 6 * 4
 That was only easy cuz we knowza some math

and rules of precedence, etc.
 What if you didn’t know those rules?
 Well, there’s an easy way of writing out this sequence

of events.
 It does seem weird at first glance…but it works!
 5 3 * 2 + 6 4 * +

 you read this left to right
 the operators are ALWAYS in the correct evaluation

order
 This notation is called postfix notation.

Stacks & Their Applications page 15

Stack Application(s)

 Basically, there are 3 types of notations for
expressions
 Infix: operator is between operands

 A + B

 Postfix: operator follows operands
 A B +

 Prefix: operator comes before operands
 + A B

 Again, in a postfix expression, operators are
ALWAYS in correct evaluation order.

Stacks & Their Applications page 16

Stack Application(s)

 Evaluation of infix expressions has 2 basic
steps:
 Convert infix expression to a postfix expression.
 Evaluate the newly converted postfix

expression.

 And guess what…
 Stacks are useful in both of these steps

 Let’s start with seeing how to actually
evaluate that crazy looking expression

Stacks & Their Applications page 17

Stack Application(s)

 Evaluating a Postfix Expression (A B +)
 Of course, we use a stack

 Each operator in a postfix expression refers to the
previous two operands

 When you read an operand
 PUSH it onto the stack

 When you read an operator, it’s associated operands
are POPed off the stack
 The indicated operation (based on the operand) is performed on

the two operators
 Result is PUSHed back onto the stack so it can be available for

use as an operand for the next operator.
 Process stops when there are no more operators in expression
 Final result is obtained by popping off remaining value in stack.

Stacks & Their Applications page 18

Stack Application(s)

 Evaluating a Postfix Expression
 Consider the simple expression: 5 * 3 + 2 + 6 * 4
 As mentioned, this converts to the following

postfix expression: 5 3 * 2 + 6 4 * +

 So follow the rules and evaluate this!

Stacks & Their Applications page 19

5 3 * 2 + 6 4 * +

 Step 1: We have an operand, 5. What do we do?

5

The rule stated:

When you
encounter an
operand, PUSH it
onto the stack.

So we PUSH 5
onto the stack.

Stacks & Their Applications page 20

5 3 * 2 + 6 4 * +

 Step 2: PUSH 3 on the stack

5

3

Stacks & Their Applications page 21

5 3 * 2 + 6 4 * +

 Step 3: We have an operator! What do we do?

5

3

1. POP the top
two operands
off the stack.

2. Perform the
indicated
operation.

3. PUSH the
result back
onto the stack.

1. So POP 3 and
5.

2. 5*3 = 15

3. PUSH 15 back
on the stack

Stacks & Their Applications page 22

5 3 * 2 + 6 4 * +

 Step 3: We have an operator! What do we do?

15

1. POP the top
two operands
off the stack.

2. Perform the
indicated
operation.

3. PUSH the
result back
onto the stack.

1. So POP 3 and
5.

2. 5*3 = 15

3. PUSH 15 back
on the stack

Stacks & Their Applications page 23

5 3 * 2 + 6 4 * +

 Step 4: PUSH 2 on the stack

15

2

Stacks & Their Applications page 24

5 3 * 2 + 6 4 * +

 Step 5: We have an operator! What do we do?

15

2

1. POP the top
two operands
off the stack.

2. Perform the
indicated
operation.

3. PUSH the
result back
onto the stack.

1. So POP 2 and
15.

2. 15 + 2 = 17

3. PUSH 17 back
on the stack

Stacks & Their Applications page 25

5 3 * 2 + 6 4 * +

 Step 5: We have an operator! What do we do?

17

1. POP the top
two operands
off the stack.

2. Perform the
indicated
operation.

3. PUSH the
result back
onto the stack.

1. So POP 2 and
15.

2. 15 + 2 = 17

3. PUSH 17 back
on the stack

Stacks & Their Applications page 26

5 3 * 2 + 6 4 * +

 Step 6: PUSH 6 on the stack

17

6

Stacks & Their Applications page 27

5 3 * 2 + 6 4 * +

 Step 7: PUSH 4 on the stack

17

6

4

Stacks & Their Applications page 28

5 3 * 2 + 6 4 * +

 Step 8: We have an operator! What do we do?

17

6

4

1. POP the top
two operands
off the stack.

2. Perform the
indicated
operation.

3. PUSH the
result back
onto the stack.

1. So POP 4 and
6.

2. 6 * 4 = 24

3. PUSH 24 back
on the stack

Stacks & Their Applications page 29

5 3 * 2 + 6 4 * +

 Step 8: We have an operator! What do we do?

17

24

1. POP the top
two operands
off the stack.

2. Perform the
indicated
operation.

3. PUSH the
result back
onto the stack.

1. So POP 4 and
6.

2. 6 * 4 = 24

3. PUSH 24 back
on the stack

Stacks & Their Applications page 30

5 3 * 2 + 6 4 * +
 Step 9: We have an operator! What do we do?

17

24

1. POP the top
two operands
off the stack.

2. Perform the
indicated
operation.

3. PUSH the
result back
onto the stack.

1. So POP 24
and 17.

2. 17 + 24 = 41

3. PUSH 41 back
on the stack

Stacks & Their Applications page 31

5 3 * 2 + 6 4 * +
 Step 9: We have an operator! What do we do?

41

1. POP the top
two operands
off the stack.

2. Perform the
indicated
operation.

3. PUSH the
result back
onto the stack.

1. So POP 24
and 17.

2. 17 + 24 = 41

3. PUSH 41 back
on the stack

Stacks & Their Applications page 32

5 3 * 2 + 6 4 * +

 Step 10: There are no more operators. So pop
the final value off the stack.

41

Result is 41

We’re Done!

Stacks & Their Applications page 33

Brief Interlude: Human Stupidity

Stacks & Their Applications page 34

Stack Application(s)

 Again, there are 2 steps to evaluate infix
expressions.

1. Evaluate the postfix expression (once
converted)
 Been there, done that

 (for those that were sleeping, that was the long previous
example)

2. But before we can evaluate, we must first
convert the infix exp. to a postfix exp.
 Infix: 5 * 3 + 2 + 6 * 4
 Postfix: 5 3 * 2 + 6 4 * +
 How do we do this…

Stacks & Their Applications page 35

Stack Application(s)

 Converting Infix Exp. to Postfix Exp.
 Again, we use a stack

 But now, this is strictly an “operator only” stack
 Only the operators are stored on the stack
 Upon reading an operand, the operand is immediately

placed into output list (printed out straight away).
 There are several rules on how this stack should be

used
 But with an example, it should be easy to understand

Stacks & Their Applications page 36

Stack Application(s)

 Converting Infix Exp. to Postfix Exp.
 Rules

1. Assume the operation is a legal one (meaning, it is possible to evaluate it).
2. Upon reading an operand, it is immediately placed into the output list (printed straight away).
3. Only the operators are placed in the stack.
4. To start, the stack is empty. The infix expression is read left to right.
5. The first operator read is pushed directly onto the stack. For all subsequent operators, the

priority of the “incoming-operator” (the one being read) will be compared with the operator on
the top of the stack.

6. If the priority of the incoming-operator is higher than the priority of the operator on the top of
the stack, then the incoming-operator will be simply PUSHed on the stack.

7. If the priority of the incoming-operator is same or lower than the priority of the operator at the
top of the stack, then the operator at top of the stack will be POPed and printed on the output
expression.

8. The process is repeated if the priority of the incoming-operator is still same or lower than the
next operator-in-the stack.

9. When a left parenthesis is encountered in the expression it is immediately pushed on the
stack, as it has the highest priority. However, once it is inside the stack, all other operators
are pushed on top of it, as its inside-stack priority is lowest.

10. When a right parenthesis is encountered, all operators up to the left parenthesis are popped
from the stack and printed out. The left and right parentheses will be discarded. When all
characters from the input infix expression have been read, the operators remaining inside the
stack, are printed out in the order in which they are popped.

Stacks & Their Applications page 37

Stack Application(s)

 Converting Infix Exp. to Postfix Exp.
 Rules

 One more thing, before we begin, we must know the
order of precedence for the operators

 The priority is as follows, with the first being the top
priority (highest precedence)
1. (Left parenthesis inside the expression
2. * /
3. + -
4. (Left parenthesis inside the stack

 The left parenthesis has the highest priority when it is
read from the expression, but once it is on the stack,
it assumes the lowest priority.

Stacks & Their Applications page 38

5 * 3 + 2 + 6 * 4

 Step 1: 5 is an operand. It is placed directly onto
output list.

Resulting Postfix Expression: 5

Stacks & Their Applications page 39

5 * 3 + 2 + 6 * 4

 Step 2: * is an operator. The stack is empty; so
PUSH * into the stack.

*

Resulting Postfix Expression: 5

Stacks & Their Applications page 40

5 * 3 + 2 + 6 * 4

 Step 3: 3 is an operand. It is placed directly onto
output list.

*

Resulting Postfix Expression: 35

Stacks & Their Applications page 41

5 * 3 + 2 + 6 * 4

 Step 4: + is an operator. The stack is not empty;
compare precedence of + to *.

*

Resulting Postfix Expression: 35

Stacks & Their Applications page 42

Stack Application(s)

 Converting Infix Exp. to Postfix Exp.
 Rules

 One more thing, before we begin, we must know the
order of precedence for the operators

 The priority is as follows, with the first being the
top priority (highest precedence)
1. (Left parenthesis inside the expression
2. * /
3. + -
4. (Left parenthesis inside the stack

 The left parenthesis has the highest priority when it is
read from the expression, but once it is on the stack,
it assumes the lowest priority.

Stacks & Their Applications page 43

Stack Application(s)

 Converting Infix Exp. to Postfix Exp.
 Rules

1. Assume the operation is a legal one (meaning, it is possible to evaluate it).
2. Upon reading an operand, it is immediately placed into the output list (printed straight away).
3. Only the operators are placed in the stack.
4. To start, the stack is empty. The infix expression is read left to right.
5. The first operator read is pushed directly onto the stack. For all subsequent operators, the

priority of the “incoming-operator” (the one being read) will be compared with the operator on
the top of the stack.

6. If the priority of the incoming-operator is higher than the priority of the operator on the top of
the stack, then the incoming-operator will be simply PUSHed on the stack.

7. If the priority of the incoming-operator is same or lower than the priority of the
operator at the top of the stack, then the operator at top of the stack will be POPed and
printed on the output expression.

8. The process is repeated if the priority of the incoming-operator is still same or lower than the
next operator-in-the stack.

9. When a left parenthesis is encountered in the expression it is immediately pushed on the
stack, as it has the highest priority. However, once it is inside the stack, all other operators
are pushed on top of it, as its inside-stack priority is lowest.

10. When a right parenthesis is encountered, all operators up to the left parenthesis are popped
from the stack and printed out. The left and right parentheses will be discarded. When all
characters from the input infix expression have been read, the operators remaining inside the
stack, are printed out in the order in which they are popped.

Stacks & Their Applications page 44

5 * 3 + 2 + 6 * 4

 Step 4: + is an operator. The stack is not empty;
compare precedence of + to *.

*

Resulting Postfix Expression: *35

+ is lower priority
than *.

So we POP * and
PUSH + onto the
stack.

+

Stacks & Their Applications page 45

5 * 3 + 2 + 6 * 4

 Step 5: 2 is an operand. It is placed directly onto
output list.

+

Resulting Postfix Expression: 2*35

Stacks & Their Applications page 46

5 * 3 + 2 + 6 * 4

 Step 6: + is an operator. The stack is not empty;
compare precedence of + to +.

+

Resulting Postfix Expression: 2*35

Stacks & Their Applications page 47

5 * 3 + 2 + 6 * 4

 Step 6: + is an operator. The stack is not empty;
compare precedence of + to +.

+

Resulting Postfix Expression: +2*35

+ is same priority
as +.

So we POP +
and PUSH + onto
the stack.

+

Stacks & Their Applications page 48

5 * 3 + 2 + 6 * 4

 Step 7: 6 is an operand. It is placed directly onto
output list.

+

Resulting Postfix Expression: 6+2*35

Stacks & Their Applications page 49

5 * 3 + 2 + 6 * 4

 Step 8: * is an operator. The stack is not empty;
compare precedence of * to +.

+

Resulting Postfix Expression: 6+2*35

Stacks & Their Applications page 50

Stack Application(s)

 Converting Infix Exp. to Postfix Exp.
 Rules

 One more thing, before we begin, we must know the
order of precedence for the operators

 The priority is as follows, with the first being the
top priority (highest precedence)
1. (Left parenthesis inside the expression
2. * /
3. + -
4. (Left parenthesis inside the stack

 The left parenthesis has the highest priority when it is
read from the expression, but once it is on the stack,
it assumes the lowest priority.

Stacks & Their Applications page 51

Stack Application(s)

 Converting Infix Exp. to Postfix Exp.
 Rules

1. Assume the operation is a legal one (meaning, it is possible to evaluate it).
2. Upon reading an operand, it is immediately placed into the output list (printed straight away).
3. Only the operators are placed in the stack.
4. To start, the stack is empty. The infix expression is read left to right.
5. The first operator read is pushed directly onto the stack. For all subsequent operators, the

priority of the “incoming-operator” (the one being read) will be compared with the operator on
the top of the stack.

6. If the priority of the incoming-operator is higher than the priority of the operator on the
top of the stack, then the incoming-operator will be simply PUSHed on the stack.

7. If the priority of the incoming-operator is same or lower than the priority of the operator at the
top of the stack, then the operator at top of the stack will be POPed and printed on the output
expression.

8. The process is repeated if the priority of the incoming-operator is still same or lower than the
next operator-in-the stack.

9. When a left parenthesis is encountered in the expression it is immediately pushed on the
stack, as it has the highest priority. However, once it is inside the stack, all other operators
are pushed on top of it, as its inside-stack priority is lowest.

10. When a right parenthesis is encountered, all operators up to the left parenthesis are popped
from the stack and printed out. The left and right parentheses will be discarded. When all
characters from the input infix expression have been read, the operators remaining inside the
stack, are printed out in the order in which they are popped.

Stacks & Their Applications page 52

5 * 3 + 2 + 6 * 4

 Step 8: * is an operator. The stack is not empty;
compare precedence of * to +.

+

*

Resulting Postfix Expression: 6+2*35

* is a higher
priority than +.

So we simply
PUSH * onto the
stack.

Stacks & Their Applications page 53

5 * 3 + 2 + 6 * 4
 Step 9: 4 is an operand. It is placed directly onto

output list.

+

*

Resulting Postfix Expression: 46+2*35

Stacks & Their Applications page 54

5 * 3 + 2 + 6 * 4

 Step 10: Infix exp. has been completely read.
POP remaining operators that are in the stack.

+

*

Resulting Postfix Expression: *46+2*35 +

And now we’re done.
We have an equivalent
postfix expression.

Stacks & Their Applications page 55

Stack Application(s)

 Two more examples:
The contents of the operator stack at the indicated points in the infix expressions (points A, B and C) are
shown below for each case

Stacks & Their Applications page 56

Stack Application(s)

 Last example:
The contents of the operator stack at the indicated points in the infix expressions (points A, B and C) are
shown below for each case

Stacks & Their Applications page 57

Stack Application(s)

 You now know how to:
1. Convert an Infix expression to a Postfix

expression
2. And then evaluate that resulting expression

Stacks & Their Applications page 58

Stack Application(s)

WASN’T
THAT

DANDY!

Stacks & Their Applications page 59

Daily Demotivator

Computer Science Department
University of Central Florida

Stacks & Their Applications
(Postfix/Infix)

COP 3502 – Computer Science I

	Stacks & Their Applications�(Postfix/Infix)
	Outline
	Stacks – An Overview
	Stacks – An Overview
	Stacks – An Overview
	Stacks – An Overview
	Stacks – An Overview
	Stacks – An Overview
	Stacks – An Overview
	Stacks – An Overview
	Stacks – An Overview
	Using Stacks
	Stack Application(s)
	Stack Application(s)
	Stack Application(s)
	Stack Application(s)
	Stack Application(s)
	Stack Application(s)
	5 3 * 2 + 6 4 * +
	5 3 * 2 + 6 4 * +
	5 3 * 2 + 6 4 * +
	5 3 * 2 + 6 4 * +
	5 3 * 2 + 6 4 * +
	5 3 * 2 + 6 4 * +
	5 3 * 2 + 6 4 * +
	5 3 * 2 + 6 4 * +
	5 3 * 2 + 6 4 * +
	5 3 * 2 + 6 4 * +
	5 3 * 2 + 6 4 * +
	5 3 * 2 + 6 4 * +
	5 3 * 2 + 6 4 * +
	5 3 * 2 + 6 4 * +
	Brief Interlude: Human Stupidity
	Stack Application(s)
	Stack Application(s)
	Stack Application(s)
	Stack Application(s)
	5 * 3 + 2 + 6 * 4
	5 * 3 + 2 + 6 * 4
	5 * 3 + 2 + 6 * 4
	5 * 3 + 2 + 6 * 4
	Stack Application(s)
	Stack Application(s)
	5 * 3 + 2 + 6 * 4
	5 * 3 + 2 + 6 * 4
	5 * 3 + 2 + 6 * 4
	5 * 3 + 2 + 6 * 4
	5 * 3 + 2 + 6 * 4
	5 * 3 + 2 + 6 * 4
	Stack Application(s)
	Stack Application(s)
	5 * 3 + 2 + 6 * 4
	5 * 3 + 2 + 6 * 4
	5 * 3 + 2 + 6 * 4
	Stack Application(s)
	Stack Application(s)
	Stack Application(s)
	Stack Application(s)
	Daily Demotivator
	Stacks & Their Applications�(Postfix/Infix)

