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 Simple warm up example (Factorial n)

 Recurrence Relations
 Factorial N
 Power N
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Recursion

 What is Recursion?
 Powerful, problem-solving strategy
 Solves large problems by reducing them to 

smaller problems of the same form

 Example:  Compute Factorial of a Number
 4! = 4 * 3 * 2 * 1 = 24

 n! = n * (n-1) * (n-2) * … * 2 * 1
 Also, 0! = 1

 (just accept it!)
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Recursion

 Example:  Compute Factorial of a Number
 Recursive Solution

 Note that each factorial is related to a factorial of the next 
smaller integer

 n! = n * (n-1)!
 4! = 4 * (4-1)! = 4 * (3!)
 But we need something else

 We need a stopping case, or this will just go on and on and on
 NOT good!

 We let 0! = 1
 So in “math terms”, we say

 n! = 1                         if n = 0
 n! = n * (n-1)!             if n > 0
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Recursion

 Example:  Compute Factorial of a Number
 Recursive Solution --- in C code

int fact (int n)
{

if (n = 0)
return 1;

else
return (n * fact(n-1));

}

 This is recursive.  Why?
 It defines the factorial of n in terms of the factorial of

(n-1), thus reducing the problem

And notice how this 
function is very clean 
and basically follows the 
mathematical definition 
of factorial.
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Recurrence Relations

 Today we go over Recurrence Relations
 The Question:  What is a recurrence relation?

 an equation that defines a sequence recursively
 each term of the sequence is defined as a function of the 

preceding term

 What is the purpose?
 In response, let us ask, what is the purpose using 

Summations in Big-O analysis?
 Answer:

 Summations are a tool to assist in measuring the running time 
of iterative algorithms
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Recurrence Relations

 Today we go over Recurrence Relations
 What is the purpose?

 But can we use this same method of analysis, along 
with summations, to decipher the running time of 
recursive algorithms?

 You cannot!
 You cannot simply “eyeball” a recursive function for a minute 

or two, in the way you can an iterative function, and come up 
with a Big-O.  Just doesn’t work.

 So just like summations are a tool to help find the Big-O 
of iterative algorithms

 Recurrence Relations are a tool to help find the 
Big-O of recursive algorithms
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Recurrence Relations

 Back to Factorial N…
int fact (int n)
{

if (n = 0)
return 1;

else
return (n * fact(n-1));

}

 The GOAL:
 We want to come up with an equation that properly 

expresses this fact function in a recursive manner.
 Then we will need to solve this newly found equation.

 We do so by putting it into its “closed form”.
 Here’s the process…
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Recurrence Relations

 Back to Factorial N…
int fact (int n)
{

if (n = 0)
return 1;

else
return (n * fact(n-1));

}

 What is happening in this problem?
 At every step of the recursion,

 meaning, each time the function is recursively called,
 What happens?

 We see that the input size (n) reduces by 1
 So if n was 100, it is reduced to 99 when the function is called 

recursively for the first time.
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Recurrence Relations

 Back to Factorial N…
int fact (int n)
{

if (n = 0)
return 1;

else
return (n * fact(n-1));

}

 What is happening in this problem?
 Also, at every step of the recursion,

 TWO mathematical operations are performed
 The ‘*’ and the ‘-’ in  return (n * fact(n-1));

 So now we want to write an equation expressing these 
two facts.
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Recurrence Relations

 Back to Factorial N…
int fact (int n)
{

if (n = 0)
return 1;

else
return (n * fact(n-1));

}

 What is happening in this problem?
 We can say the following:

 The total number of operations needed to execute this fact
function for any given input, n, can be expressed as

1) the sum of the 2 operations (the ‘*’ and the ‘-’)
2) plus the number of operations needed to execute the 

function for n-1
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Recurrence Relations

 Back to Factorial N…
int fact (int n)
{

if (n = 0)
return 1;

else
return (n * fact(n-1));

}

 In techno talk:
 Let T(n) represent the # of operations of this function,
 T(n) can be expressed as a sum of:
 T(n-1)
 and the two arithmetic operations
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Recurrence Relations

 Back to Factorial N…
int fact (int n)
{

if (n = 0)
return 1;

else
return (n * fact(n-1));

}

 In techno talk:
 T(n) can be expressed as a sum of:
 T(n-1)
 and the two arithmetic operations

T(n) = T(n-1) + 2
T(1) = 1 Meaning, we it takes constant time to simply return.
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Recurrence Relations

 Back to Factorial N…
int fact (int n)
{

if (n = 0)
return 1;

else
return (n * fact(n-1));

}

 So what did we just do?
 We came up with an equation that properly expresses 

this fact function in a recursive manner.
T(n) = T(n-1) + 2
T(1) = 1

 This equation is our Recurrence Relation
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Recurrence Relations

 Back to Factorial N…
 From this recurrence relation, T(n), we can come 

up with a Big-O
 Great, so we solved it, so let’s move on!
 Not so fast.

 As it is, the recurrence relation,
T(n) = T(n-1) + 2
T(1) = 1

 doesn’t tell us about the # of operations of T(n)
 Does anyone know how many operations are in T(n-1)?
 Is it 487 operations?
 We DON’T know!

Perhaps 515,243 operations?
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Recurrence Relations

 Back to Factorial N…
 The problem is only “solved” once we remove 

all T(…)’s from the right side of the equation
 Again, here’s the equation:

T(n) = T(n-1) + 2
 So T(n-1) needs to go bye-bye
 Then the problem is in its “closed form” and is 

solved.
 So how do we make this happen?

 BUCKLE UP and HOLD ON.
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Recurrence Relations

 Back to Factorial N
 We need to solve T(n) in terms of n
 For the recurrence relation,

 T(n) = T(n-1) +2
 Do we know what T(n-1) equals?

 Does it equal 8,572 operations?

 Who knows?  We surely don’t know!
 So we want to REDUCE the right side

 specifically, the T(n-1)

 UNTIL we get to that which we do know!
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Recurrence Relations

 Back to Factorial N
 We need to solve T(n) in terms of n
 Starting from this equation:

T(n) = T(n-1) + 2
 We reduce the right side until we get to T(1).
 Why?

 CUZ we know T(1).
 What is T(1)?

 It is 1!  …this was from our Recurrence Relation earlier.
 So then we can put 1 in the place of T(1)

 Effectively eliminating all T(…)s from the right side of eqn!
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Recurrence Relations

 Back to Factorial N
 We need to solve T(n) in terms of n

T(n) = T(n-1) + 2
 We reduce the right side until we get to T(1).
 Here’s the idea:

T(n-1)

T(n-2)

T(n-3)

…

T(n-something) = T(1)

T(100-1)

T(100-2)

T(100-3)

…

T(100-99) = T(1)

if we assume
that n = 100, 
we have…



Recurrence Relations page 20

Recurrence Relations

 Back to Factorial N
 We need to solve T(n) in terms of n

T(n) = T(n-1) + 2
 We reduce the right side until we get to T(1).
 So, we do this in steps
1) We replace n with n-1 on both sides of the 

equation
2) We plug the result back in
3) And then we do it again

and again and again and again…
till a “light goes off” and we see something
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Recurrence Relations

Or you’re 
like this guy, 
whose lights 
never 
turned on.
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Recurrence Relations

 Back to Factorial N
 T(n) = T(n-1) + 2      ----- call this Eq. 1

 Replace n with n-1

DON’T overcomplicate this step.

It is REALLY this SIMPLE.

Wherever you see an n in Eq. 1, simply replace with n-1.

So if you have T(n-1) and you replace that n with an n-1, 
you will get T((n-1)-1), which equates to T(n-2).

Simple right?

Right.
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Recurrence Relations

 Back to Factorial N
 T(n) = T(n-1) + 2      ----- call this Eq. 1

 Replace n with n-1
 T(n-1) = T(n-2) + 2       ----- call this Eq. 2

 Now substitute the result of Eq. 2 into Eq. 1
 T(n) = T(n-2) + 2 + 2

Wait?  How’d we get this?

T(n) = T(n-1) + 2       ----- Eq. 1

And from Eq. 2, we also have, T(n-1) = T(n-2) + 2

So we simply plug in the result (the right side) of the Eq. 2 into Eq. 1 where we 
see T(n-1)

T(n) = T(n-1) + 2

T(n) = (T(n-2) + 2) + 2         removing parantheses, we get

T(n) = T(n-2) + 2 + 2
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Recurrence Relations

 Back to Factorial N
 T(n) = T(n-1) + 2      ----- call this Eq. 1

 Replace n with n-1
 T(n-1) = T(n-2) + 2       ----- call this Eq. 2

 Now substitute the result of Eq. 2 into Eq. 1
 T(n) = T(n-2) + 2 + 2

 We can look at 2 + 2 as 2*2 ….you’ll see why we do this 
shortly

 T(n) = T(n-2) + 2* 2       ----- call this Eq. 3
 So what did we do:

 We made ANOTHER equation for T(n)
 But this one is in terms of T(n-2)
 REDUCED from being in terms of T(n-1)
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Recurrence Relations

 Back to Factorial N
 So we now have this new equation for T(n):

 T(n) = T(n-2) + 2*2
 Are we done?

 NO!  Cuz we still have T(…)s on the right
 And do we know how many operations are 

performed by T(n-2)?
 Perhaps 5,219 operations?  We don’t know!

 So we now need to REDUCE this equation further
 We have T(n) in terms of T(n-2)
 We want to get T(n) in terms of T(n-3)
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Recurrence Relations

 Back to Factorial N
 So we now need to REDUCE this equation further
 We want to get T(n) in terms of T(n-3)
 How are we going to do this?

 We currently have T(n) = T(n-2) + 2*2
 We want to develop an equation with T(n-2) on the left
 and in terms of T(n-3)

 So, in Eq. 2, once again, replace n with n-1
 T(n-1) = T(n-2) + 2       ----- Eq. 2
 Replace n with n-1
 T(n-2) = T(n-3) + 2       ----- call this Eq. 4

 Ah!  So we now have our “T(n-2)” equation
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Recurrence Relations

 Back to Factorial N
 Now substitute the result of Eq. 4 into Eq. 3

 T(n-2) = T(n-3) + 2       ----- Eq. 4
 T(n) = T(n-2) + 2* 2      ----- Eq. 3
 T(n) = T(n-3) + 2 + 2*2

 2 + 2*2 really is 2*3
 T(n) = T(n-3) + 2*3

 Again, what did we accomplish?
 We made ANOTHER equation for T(n)
 But this one is in terms of T(n-3)
 REDUCED from being in terms of T(n-2)

…again, you’ll see why we do this in a bit
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Recurrence Relations

 Back to Factorial N
 Thus far, we have three equations with T(n) on 

the left side
 T(n) = T(n-1) + 2*1

 Note that I added the *1 next to the 2
 This doesn’t change anything right?
 2*1 is the same as just plain ‘ole 2
 You’ll see why we did this in a second.

 T(n) = T(n-2) + 2*2
 T(n) = T(n-3) + 2*3
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Recurrence Relations

 Back to Factorial N
 Is there a pattern developing?  Perhaps some 

“light” going off?
 1st step of recursion, we have:   T(n) = T(n-1) + 2*1
 2nd step of recursion, we have: T(n) = T(n-2) + 2*2
 3rd step of recursion, we have:   T(n) = T(n-3) + 2*3

 If we followed the process one more time, we get
 T(n) = T(n-4) + 2*4

 So on the kth step/stage of the recursion, we 
get a generalized recurrence relation:
 T(n) = T(n-k) + 2*k

…for the 4th step of the recursion
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Recurrence Relations

 Back to Factorial N
 So on the kth step/stage of the recursion, we 

get a generalized recurrence relation:
 T(n) = T(n-k) + 2*k

 WHEW!
 That was a lot!
 But we’re finally done!
 WRONG!!!  Why aren’t we done yet?
 CUZ we still have T(…)s on the right side of the equation

 So now we need to actually solve this 
generalized recurrence relation

Right.?.
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Recurrence Relations

 Back to Factorial N
 We need to solve this generalized rec. relation

 T(n) = T(n-k) + 2*k

 How?
 Remember we said we wanted to reduce the right side 

of the equation to T(1)
 Again, why?

 Because we know what T(1) equals…it equals 1!
 So we have T(n-k) and we want T(1)
 Simple!  Let n - k = 1
 Solve for k leaving k = n – 1
 Plug back into equation
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Recurrence Relations

 Back to Factorial N
 We need to solve this generalized rec. relation

 T(n) = T(n-k) + 2*k
 k = n – 1

 Plug into above equation
 T(n) = T(n-(n-1)) + 2(n-1) 

 And we know that T(1) = 1
 Therefore….
 T(n) = 2(n-1) + 1
 And we are done!

 Right side does not have any T(…)’s
 This rec. relation is now solved!
 This algorithm runs in O(n), or LINEAR time.

= 2n – 1

= T(1) + 2(n-1)
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Brief Interlude:  Human Stupidity
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Recurrence Relations

 Let’s look at a function that calculates powers
int power (int x, int n) {      // calculates the value of x^n

if (n == 0)
return 1;

if (n == 1)
return x;

if (n is even)
return power(x*x, n/2);

else // if n is odd
return power(x*x, n/2)*x;

}

 What’s going on in this problem?
 At every step, the problem size is reduced by half
 If n is even, 2 arithmetic operations are computed
 If n is odd, 3 arithmetic operations are computed
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Recurrence Relations

 Power Function
 What’s going on in this problem?

 At every step, the problem size is reduced by half
 If n is even, 2 arithmetic operations are computed
 If n is odd, 3 arithmetic operations are computed

 When computing time complexity, we assume 
the worst case
 We assume n is odd at each step

 So 3 operations are assumed to be always needed

 Thus, T(n) can be expressed as the sum of 
T(n/2) and the 3 operations needed at each step
T(n) = T(n/2) + 3
T(1) = 1
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Recurrence Relations

 Power Function
 So here’s our recurrence relation:

T(n) = T(n/2) + 3
T(1) = 1

 We need to solve this by removing all T(…)’s 
from the right side.
 T(n/2) needs to hit the road

 Then the problem is in its “closed form” 
and is solved.
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Recurrence Relations

 Power Function
 We need to solve T(n) in terms of n
 Starting from this equation

T(n) = T(n/2) + 3
We reduce the right side until we get to T(1).

 Why?
 T(1) is known to us (it equals 1)

 We do this in steps
 We replace n with n/2 on both sides of the equation
 We plug the result back in
 And then we do it again…till a “light goes off” and we 

see something
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Recurrence Relations

 Power Function
 This time we’ll do a slightly different order of 

things…just so you see two different ways
 Start with the base recurrence relation
 T(n) = T(n/2) + 3             ----- call this Eq. 1
 Replace n with n/2, and go ahead and do this several 

times
 T(n/2) = T(n/4) + 3          ----- call this Eq. 2
 T(n/4) = T(n/8) + 3          ----- call this Eq. 3
 T(n/8) = T(n/16) + 3        ----- call this Eq. 4

 Now we substitute each one of these back into 
Eq.1 and hopefully see a pattern
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Recurrence Relations

 Power Function
 Here’s the four current equations we have:

 T(n) = T(n/2) + 3             ----- Eq. 1
 T(n/2) = T(n/4) + 3          ----- Eq. 2
 T(n/4) = T(n/8) + 3          ----- Eq. 3
 T(n/8) = T(n/16) + 3        ----- Eq. 4

 Now substitute the result of Eq. 2 into Eq. 1
 T(n) = T(n/4) + 3 + 3

 We can look at 3 + 3 as 3*2 ….you remember 
why…right.?.

 T(n) = T(n/4) + 3*2          ----- call this Eq. 5
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Recurrence Relations

 Power Function
 Here’s the four current equations we have:

 T(n) = T(n/2) + 3             ----- Eq. 1
 T(n/2) = T(n/4) + 3          ----- Eq. 2
 T(n/4) = T(n/8) + 3          ----- Eq. 3
 T(n/8) = T(n/16) + 3        ----- Eq. 4

 Now substitute the result of Eq. 3 into Eq. 5
 T(n) = T(n/8) + 3 + 3*2
 T(n) = T(n/8) + 3*3          ----- call this Eq. 6

 One more substitution of Eq. 4 into Eq. 6:
 T(n) = T(n/16) + 3*4          ----- call this Eq. 7
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Recurrence Relations

 Power Function
 Now show all the equations we developed with 

T(n) on the left…is there a pattern developing?
 T(n) = T(n/2) + 3*1
 T(n) = T(n/4) + 3*2
 T(n) = T(n/8) + 3*3
 T(n) = T(n/16) + 3*4

 So on the kth step/stage of the recursion, we get 
a generalized recurrence relation:
 T(n) =  T(n/2k) + 3*k

 We’re not done yet right.
 Cuz we need to get rid of the T(n/2k)

= T(n/21) + 3*1
= T(n/22) + 3*2
= T(n/23) + 3*3
= T(n/24) + 3*4
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Recurrence Relations

 Power Function
 We need to solve this generalized rec. relation

 T(n) = T(n/2k) + 3*k
 How?

 Remember we said we wanted to reduce the right side 
of the equation to T(1)

 Again, why?
 Because we know what T(1) equals…it equals 1!

 So we have T(n/2k) and we want T(1)
 Simple!  Let n = 2k

 Solve for k
 Take log base 2 of both sides
 k = log n Plug back into equation
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Recurrence Relations

 Power Function
 We need to solve this generalized rec. relation

 T(n) = T(n/2k) + 3*k
 So n = 2k and   k = log n

 Plug into above equation
 T(n) = T(1) + 3(log n)

 And we know that T(1) = 1
 Therefore….
 T(n) = 1 + 3log(n)
 And we are done!  This algorithm runs in logarithmic 

time.
 Right side does not have any T(…)’s
 This rec. relation is now solved!
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Recurrence Relations

WASN’T
THAT

(Let’s admit it:
that sucked!)
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Daily Demotivator
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