

COP 3502 – Computer Science I

Outline

- Recursion
 - Simple warm up example (Factorial n)
- Recurrence Relations
 - Factorial N
 - Power N

Recursion

- What is Recursion?
 - Powerful, problem-solving strategy
 - Solves large problems by reducing them to smaller problems of the <u>same form</u>
- Example: Compute Factorial of a Number
 - 4! = 4 * 3 * 2 * 1 = 24
 - n! = n * (n-1) * (n-2) * ... * 2 * 1
 - Also, 0! = 1
 - (just accept it!)

Recursion

- Example: Compute Factorial of a Number
 - Recursive Solution
 - Note that each factorial is related to a factorial of the next smaller integer
 - n! = n * (n-1)!
 - 4! = 4 * (4-1)! = 4 * (3!)
 - But we need something else
 - We need a stopping case, or this will just go on and on and on
 - NOT good!
 - We let 0! = 1
 - So in "math terms", we say

if
$$n = 0$$

if
$$n > 0$$

Recursion

- Example: Compute Factorial of a Number
 - Recursive Solution --- in C code

```
int fact (int n)
{
    if (n = 0)
        return 1;
    else
        return (n * fact(n-1));
}
```

And notice how this function is very clean and basically follows the mathematical definition of factorial.

- This is recursive. Why?
 - It defines the factorial of n in terms of the factorial of (n-1), thus reducing the problem

- Today we go over Recurrence Relations
 - The Question: What is a recurrence relation?
 - an <u>equation</u> that defines a sequence recursively
 - each term of the sequence is defined as a function of the preceding term
 - What is the purpose?
 - In response, let us ask, what is the purpose using <u>Summations</u> in <u>Big-O</u> analysis?
 - Answer:
 - Summations are a tool to assist in measuring the running time of <u>iterative</u> algorithms

- Today we go over Recurrence Relations
 - What is the purpose?
 - But can we use this same method of analysis, along with summations, to decipher the running time of recursive algorithms?
 - You cannot!
 - You cannot simply "eyeball" a recursive function for a minute or two, in the way you can an iterative function, and come up with a Big-O. Just doesn't work.
 - So just like summations are a tool to help find the Big-O of <u>iterative</u> algorithms
 - Recurrence Relations are a tool to help find the Big-O of <u>recursive</u> algorithms

Back to Factorial N...

```
int fact (int n)
{
    if (n = 0)
        return 1;
    else
        return (n * fact(n-1));
}
```

The GOAL:

- We want to come up with an <u>equation</u> that properly expresses this fact function in a <u>recursive manner</u>.
- Then we will need to <u>solve</u> this newly found equation.
 - We do so by putting it into its "closed form".
- Here's the process...


```
int fact (int n)
{
    if (n = 0)
        return 1;
    else
        return (n * fact(n-1));
}
```

- What is happening in this problem?
 - At every step of the recursion,
 - meaning, each time the function is recursively called,
 - What happens?
 - We see that the input size (n) reduces by 1
 - So if n was 100, it is reduced to 99 when the function is called recursively for the first time.


```
int fact (int n)
{
    if (n = 0)
        return 1;
    else
        return (n * fact(n-1));
}
```

- What is happening in this problem?
 - Also, at every step of the recursion,
 - TWO mathematical operations are performed
 - The '*' and the '-' in return (n * fact(n-1));
 - So now we want to write an equation expressing these two facts.


```
int fact (int n)
{
    if (n = 0)
        return 1;
    else
        return (n * fact(n-1));
}
```

- What is happening in this problem?
 - We can say the following:
 - The total number of operations needed to execute this fact function for any given input, n, can be expressed as
 - 1) the sum of the 2 operations (the '*' and the '-')
 - plus the number of operations needed to execute the function for n-1


```
int fact (int n)
{
    if (n = 0)
        return 1;
    else
        return (n * fact(n-1));
}
```

- In techno talk:
 - Let T(n) represent the # of operations of this function,
 - T(n) can be expressed as a sum of:
 - T(n-1)
 - and the two arithmetic operations


```
int fact (int n)
{
    if (n = 0)
        return 1;
    else
        return (n * fact(n-1));
}
```

- In techno talk:
 - T(n) can be expressed as a sum of:
 - T(n-1)
 - and the two arithmetic operations

$$T(n) = T(n-1) + 2$$

 $T(1) = 1$ Meaning, we it takes constant time to simply return.

Back to Factorial N...

```
int fact (int n)
{
    if (n = 0)
        return 1;
    else
        return (n * fact(n-1));
}
```

- So what did we just do?
 - We came up with an equation that properly expresses this fact function in a recursive manner.

$$T(n) = T(n-1) + 2$$

 $T(1) = 1$

This equation is our Recurrence Relation

- Back to Factorial N...
 - From this recurrence relation, T(n), we can come up with a Big-O
 - Great, so we solved it, so let's move on!
 - Not so fast.
 - As it is, the recurrence relation,

$$T(n) = T(n-1) + 2$$

 $T(1) = 1$

- doesn't tell us about the # of operations of T(n)
 - Does anyone know how many operations are in T(n-1)?
 - Is it 487 operations? Perhaps 515,243 operations?
 - We DON'T know!

- Back to Factorial N...
 - The problem is only "solved" once we remove all T(...)'s from the right side of the equation
 - Again, here's the equation:

$$T(n) = T(n-1) + 2$$

- So T(n-1) needs to go bye-bye
- Then the problem is in its "closed form" and is solved.
- So how do we make this happen?
- BUCKLE UP and HOLD ON.

- Back to Factorial N
 - We need to solve T(n) in terms of n
 - For the recurrence relation,
 - T(n) = T(n-1) + 2
 - Do we know what T(n-1) equals?
 - Does it equal 8,572 operations?
 - Who knows? We surely don't know!
 - So we want to REDUCE the right side
 - specifically, the T(n-1)
 - UNTIL we get to that which we do know!

- Back to Factorial N
 - We need to solve T(n) in terms of n
 - Starting from this equation:

$$T(n) = T(n-1) + 2$$

- We reduce the right side until we get to T(1).
- Why?
 - CUZ we know T(1).
 - What is T(1)?
 - It is 1! ...this was from our Recurrence Relation earlier.
 - So then we can put 1 in the place of T(1)
 - Effectively eliminating all T(...)s from the right side of eqn!

- We need to solve T(n) in terms of n T(n) = T(n-1) + 2
- We reduce the right side until we get to T(1).
- Here's the idea:

$$T(n-1)$$
 if we assume $T(100-1)$ $T(n-2)$ that $n = 100$, $T(100-2)$ $T(n-3)$... $T(100-3)$... $T(n-something) = T(1)$

- Back to Factorial N
 - We need to solve T(n) in terms of n T(n) = T(n-1) + 2
 - We reduce the right side until we get to T(1).
 - So, we do this in steps
 - We <u>replace n with n-1</u> on both sides of the equation
 - We plug the result back in
 - 3) And then we do it again and again and again and again... till a "light goes off" and we see something

Or you're like this guy, whose lights never turned on.

- Back to Factorial N
 - T(n) = T(n-1) + 2 ----- call this Eq. 1
 - Replace n with n-1

DON'T overcomplicate this step.

It is REALLY this SIMPLE.

Wherever you see an n in Eq. 1, simply replace with n-1.

So if you have T(n-1) and you replace that n with an n-1, you will get T((n-1)-1), which equates to T(n-2).

Simple right?

Right.

- Back to Factorial N
 - T(n) = T(n-1) + 2 ----- call this Eq. 1
 - Replace n with n-1
 - T(n-1) = T(n-2) + 2 ----- call this Eq. 2
 - Now substitute the result of Eq. 2 into Eq. 1
 - T(n) = T(n-2) + 2 + 2

Wait? How'd we get this?

$$T(n) = T(n-1) + 2$$
 ---- Eq. 1

And from Eq. 2, we also have, T(n-1) = T(n-2) + 2

So we simply plug in the result (the right side) of the Eq. 2 into Eq. 1 where we see T(n-1)

$$T(n) = T(n-1) + 2$$

$$T(n) = (T(n-2) + 2) + 2$$
 removing parantheses, we get

$$T(n) = T(n-2) + 2 + 2$$

- Back to Factorial N
 - T(n) = T(n-1) + 2 ----- call this Eq. 1
 - Replace n with n-1
 - T(n-1) = T(n-2) + 2 ----- call this Eq. 2
 - Now substitute the result of Eq. 2 into Eq. 1
 - T(n) = T(n-2) + 2 + 2
 - We can look at 2 + 2 as 2*2you'll see why we do this shortly
 - T(n) = T(n-2) + 2*2 ----- call this Eq. 3
 - So what did we do:
 - We made ANOTHER equation for T(n)
 - But this one is in terms of T(n-2)
 - REDUCED from being in terms of T(n-1)

- Back to Factorial N
 - So we now have this new equation for T(n):
 - T(n) = T(n-2) + 2*2
 - Are we done?
 - NO! Cuz we still have T(...)s on the right
 - And do we know how many operations are performed by T(n-2)?
 - Perhaps 5,219 operations? We don't know!
 - So we now need to REDUCE this equation further
 - We have T(n) in terms of T(n-2)
 - We want to get T(n) in terms of T(n-3)

- Back to Factorial N
 - So we now need to REDUCE this equation further
 - We want to get T(n) in terms of T(n-3)
 - How are we going to do this?
 - We currently have T(n) = T(n-2) + 2*2
 - We want to develop an equation with T(n-2) on the <u>left</u>
 - and in terms of T(n-3)
 - So, in Eq. 2, once again, replace n with n-1
 - T(n-1) = T(n-2) + 2 ----- Eq. 2
 - Replace n with n-1
 - T(n-2) = T(n-3) + 2 ----- call this Eq. 4
 - Ah! So we now have our "T(n-2)" equation

- Back to Factorial N
 - Now substitute the result of Eq. 4 into Eq. 3

$$T(n-2) = T(n-3) + 2$$
 ----- Eq. 4

$$T(n) = T(n-2) + 2*2$$
 ----- Eq. 3

- T(n) = T(n-3) + 2 + 2*2
 - 2 + 2*2 really is 2*3 ...again, you'll see why we do this in a bit
- T(n) = T(n-3) + 2*3
- Again, what did we accomplish?
 - We made ANOTHER equation for T(n)
 - But this one is in terms of T(n-3)
 - REDUCED from being in terms of T(n-2)

- Back to Factorial N
 - Thus far, we have three equations with T(n) on the left side
 - T(n) = T(n-1) + 2*1
 - Note that I added the *1 next to the 2
 - This doesn't change anything right?
 - 2*1 is the same as just plain 'ole 2
 - You'll see why we did this in a second.

$$T(n) = T(n-2) + 2*2$$

$$T(n) = T(n-3) + 2*3$$

- Back to Factorial N
 - Is there a pattern developing? Perhaps some "light" going off?
 - 1st step of recursion, we have: T(n) = T(n-1) + 2*1
 - 2^{nd} step of recursion, we have: $T(n) = T(n-2) + 2^*2$
 - 3^{rd} step of recursion, we have: T(n) = T(n-3) + 2*3
 - If we followed the process one more time, we get
 - T(n) = T(n-4) + 2*4 ... for the 4th step of the recursion
 - So on the <u>kth step/stage of the recursion</u>, we get a <u>generalized recurrence relation</u>:
 - T(n) = T(n-k) + 2*k

- Back to Factorial N
 - So on the <u>kth step/stage of the recursion</u>, we get a <u>generalized recurrence relation</u>:
 - T(n) = T(n-k) + 2*k
 - WHEW!
 - That was a lot!
 - But we're finally done! Right.?.
 - WRONG!!! Why aren't we done yet?
 - CUZ we still have T(...)s on the right side of the equation
 - So now we need to actually solve this generalized recurrence relation

- Back to Factorial N
 - We need to solve this generalized rec. relation
 - T(n) = T(n-k) + 2*k
 - How?
 - Remember we said we wanted to reduce the right side of the equation to T(1)
 - Again, why?
 - Because we know what T(1) equals...it equals 1!
 - So we have T(n-k) and we want T(1)
 - Simple! Let n k = 1
 - Solve for k leaving k = n − 1
 - Plug back into equation

- Back to Factorial N
 - We need to solve this generalized rec. relation
 - T(n) = T(n-k) + 2*k
 - k = n 1
 - Plug into above equation
 - T(n) = T(n-(n-1)) + 2(n-1) = T(1) + 2(n-1)
 - And we know that T(1) = 1
 - Therefore....
 - T(n) = 2(n-1) + 1 = 2n 1
 - And we are done!
 - Right side does not have any T(...)'s
 - This rec. relation is now solved!
 - This algorithm runs in O(n), or LINEAR time.

Brief Interlude: Human Stupidity

Let's look at a function that calculates powers

- What's going on in this problem?
 - At every step, the problem size is reduced by <u>half</u>
 - If n is even, 2 arithmetic operations are computed
 - If n is odd, 3 arithmetic operations are computed

- Power Function
 - What's going on in this problem?
 - At every step, the problem size is reduced by <u>half</u>
 - If n is even, 2 arithmetic operations are computed
 - If n is odd, 3 arithmetic operations are computed
 - When computing time complexity, we assume the worst case
 - We <u>assume</u> n is odd at each step
 - So 3 operations are assumed to be always needed
 - Thus, T(n) can be expressed as the sum of T(n/2) and the 3 operations needed at each step T(n) = T(n/2) + 3

$$T(1) = 1$$

- Power Function
 - So here's our recurrence relation:

$$T(n) = T(n/2) + 3$$

 $T(1) = 1$

- We need to solve this by removing all T(...)'s from the right side.
 - T(n/2) needs to hit the road
- Then the problem is in its "closed form" and is solved.

Power Function

- We need to solve T(n) in terms of n
- Starting from this equation
 T(n) = T(n/2) + 3
 We reduce the right side until we get to T(1).
- Why?
 - T(1) is known to us (it equals 1)
- We do this in steps
 - We replace n with <u>n/2</u> on both sides of the equation
 - We plug the result back in
 - And then we do it again...till a "light goes off" and we see something

Power Function

- This time we'll do a slightly different order of things...just so you see two different ways
 - Start with the base recurrence relation
 - T(n) = T(n/2) + 3 ----- call this Eq. 1
 - Replace n with n/2, and go ahead and do this several times
 - T(n/2) = T(n/4) + 3 ---- call this Eq. 2
 - T(n/4) = T(n/8) + 3 ---- call this Eq. 3
 - T(n/8) = T(n/16) + 3 ---- call this Eq. 4
- Now we substitute each one of these back into Eq.1 and hopefully see a pattern

Power Function

Here's the four current equations we have:

■
$$T(n) = T(n/2) + 3$$
 ----- Eq. 1
■ $T(n/2) = T(n/4) + 3$ ----- Eq. 2
■ $T(n/4) = T(n/8) + 3$ ----- Eq. 3
■ $T(n/8) = T(n/16) + 3$ ----- Eq. 4

Now substitute the result of Eq. 2 into Eq. 1

$$T(n) = T(n/4) + 3 + 3$$

We can look at 3 + 3 as 3*2you remember why...right.?.

$$T(n) = T(n/4) + 3*2$$
 ---- call this Eq. 5

Power Function

Here's the four current equations we have:

■
$$T(n) = T(n/2) + 3$$
 ----- Eq. 1
■ $T(n/2) = T(n/4) + 3$ ----- Eq. 2
■ $T(n/4) = T(n/8) + 3$ ----- Eq. 3
■ $T(n/8) = T(n/16) + 3$ ----- Eq. 4

Now substitute the result of Eq. 3 into Eq. 5

■
$$T(n) = T(n/8) + 3 + 3*2$$

■ $T(n) = T(n/8) + 3*3$ ----- call this Eq. 6

One more substitution of Eq. 4 into Eq. 6:

$$T(n) = T(n/16) + 3*4$$
 ---- call this Eq. 7

Power Function

Now show all the equations we developed with T(n) on the left…is there a pattern developing?

```
■ T(n) = T(n/2) + 3*1 = T(n/2^1) + 3*1

■ T(n) = T(n/4) + 3*2 = T(n/2^2) + 3*2

■ T(n) = T(n/8) + 3*3 = T(n/2^3) + 3*3

■ T(n) = T(n/16) + 3*4 = T(n/2^4) + 3*4
```

So on the kth step/stage of the recursion, we get a generalized recurrence relation:

$$T(n) = T(n/2^k) + 3^k$$

- We're not done yet right.
- Cuz we need to get rid of the T(n/2k)

Power Function

- We need to solve this generalized rec. relation
 - $T(n) = T(n/2^k) + 3^k$
- How?
 - Remember we said we wanted to reduce the right side of the equation to T(1)
 - Again, why?
 - Because we know what T(1) equals...it equals 1!
 - So we have T(n/2^k) and we want T(1)
 - Simple! Let n = 2^k
 - Solve for k
 - Take log base 2 of both sides
 - k = log n

Plug back into equation

Power Function

- We need to solve this generalized rec. relation
 - $T(n) = T(n/2^k) + 3^k$
 - So $n = 2^k$ and $k = \log n$
 - Plug into above equation
 - $T(n) = T(1) + 3(\log n)$
 - And we know that T(1) = 1
 - Therefore....
 - T(n) = 1 + 3log(n)
 - And we are done! This algorithm runs in logarithmic time.
- Right side does not have any T(...)'s
- This rec. relation is now solved!

WASN'T THAT

(Let's admit it: that sucked!)

Daily Demotivator

COP 3502 – Computer Science I