Recurrence Relations

Computer Science Department University of Central Florida

COP 3502 - Computer Science I

Outline

- Recursion
- Simple warm up example (Factorial n)
- Recurrence Relations
- Factorial N
- Power N

Recursion

What is Recursion?

- Powerful, problem-solving strategy
- Solves large problems by reducing them to smaller problems of the same form
- Example: Compute Factorial of a Number
- 4 ! $=4$ * 3 * 2 * $1=24$
- n ! $=\mathrm{n}$ * $(\mathrm{n}-1)$ * $(\mathrm{n}-2)$ * ... * 2 * 1
- Also, 0 ! = 1
- (just accept it!)

Recursion

- Example: Compute Factorial of a Number
- Recursive Solution
- Note that each factorial is related to a factorial of the next smaller integer
- n ! = n * ($\mathrm{n}-1$)!
- $4!=4$ * (4-1)! = 4 * (3!)
- But we need something else
- We need a stopping case, or this will just go on and on and on
- NOT good!
- We let $0!=1$
- So in "math terms", we say

$$
\begin{array}{ll}
n!=1 & \text { if } n=0 \\
n!=n *(n-1)! & \text { if } n>0
\end{array}
$$

Recursion

- Example: Compute Factorial of a Number
- Recursive Solution --- in C code int fact (int n)
$\{$
if $(\mathrm{n}=0)$
return 1;
else
return (n * fact(n-1));
\}
- This is recursive. Why?
- It defines the factorial of n in terms of the factorial of ($n-1$), thus reducing the problem

Recurrence Relations

- Today we go over Recurrence Relations
- The Question: What is a recurrence relation?
- an equation that defines a sequence recursively
- each term of the sequence is defined as a function of the preceding term
- What is the purpose?
- In response, let us ask, what is the purpose using Summations in Big-O analysis?
- Answer:
- Summations are a tool to assist in measuring the running time of iterative algorithms

Recurrence Relations

- Today we go over Recurrence Relations

- What is the purpose?
- But can we use this same method of analysis, along with summations, to decipher the running time of recursive algorithms?
- You cannot!
- You cannot simply "eyeball" a recursive function for a minute or two, in the way you can an iterative function, and come up with a Big-O. Just doesn't work.
- So just like summations are a tool to help find the Big-O of iterative algorithms
- Recurrence Relations are a tool to help find the Big-O of recursive algorithms

Recurrence Relations

- Back to Factorial N...
int fact (int n)
\{
if ($\mathrm{n}=0$)
return 1;
else
return (n * fact(n-1));
\}
- The GOAL:
- We want to come up with an equation that properly expresses this fact function in a recursive manner.
- Then we will need to solve this newly found equation.
- We do so by putting it into its "closed form".
- Here's the process...

Recurrence Relations

- Back to Factorial N...
int fact (int n)
\{
if ($\mathrm{n}=0$)
return 1;
else
return (n * fact($\mathrm{n}-1$));
\}
- What is happening in this problem?
- At every step of the recursion,
- meaning, each time the function is recursively called,
- What happens?
- We see that the input size (n) reduces by 1
- So if n was 100 , it is reduced to 99 when the function is called recursively for the first time.

Recurrence Relations

- Back to Factorial N...
int fact (int n)
\{
if ($\mathrm{n}=0$)
return 1;
else
return (n * fact(n-1));
\}
- What is happening in this problem?
- Also, at every step of the recursion,
- TWO mathematical operations are performed
- The '*' and the '-' in return (n * fact(n-1));
- So now we want to write an equation expressing these two facts.

Recurrence Relations

- Back to Factorial N...
int fact (int n)
\{
if ($\mathrm{n}=0$)
return 1;
else
return (n * fact(n-1));
\}
- What is happening in this problem?
- We can say the following:
- The total number of operations needed to execute this fact function for any given input, n, can be expressed as

1) the sum of the 2 operations (the '*' and the '-')
2) plus the number of operations needed to execute the function for $\mathrm{n}-1$

Recurrence Relations

- Back to Factorial N...
int fact (int n)
\{
if ($\mathrm{n}=0$)
return 1;
else
return (n * fact(n-1));
\}
- In techno talk:
- Let T(n) represent the \# of operations of this function,
- T(n) can be expressed as a sum of:
- T(n-1)
- and the two arithmetic operations

Recurrence Relations

- Back to Factorial N...
int fact (int n)
\{
if ($\mathrm{n}=0$)
return 1;
else
return (n * fact(n-1));
\}
- In techno talk:
- T(n) can be expressed as a sum of:
- T(n-1)
- and the two arithmetic operations
$T(n)=T(n-1)+2$
$T(1)=1 \quad$ Meaning, we it takes constant time to simply return.

Recurrence Relations

- Back to Factorial N...

```
int fact (int n)
\{
    if ( \(\mathrm{n}=0\) )
        return 1;
        else
        return (n * fact(n-1));
    \}
```

- So what did we just do?
- We came up with an equation that properly expresses this fact function in a recursive manner.

$$
\begin{aligned}
& T(n)=T(n-1)+2 \\
& T(1)=1
\end{aligned}
$$

- This equation is our Recurrence Relation

Recurrence Relations

- Back to Factorial N...
- From this recurrence relation, $T(n)$, we can come up with a Big-O
- Great, so we solved it, so let's move on!
- Not so fast.
- As it is, the recurrence relation,

$$
\begin{aligned}
& T(n)=T(n-1)+2 \\
& T(1)=1
\end{aligned}
$$

- doesn't tell us about the \# of operations of T(n)
- Does anyone know how many operations are in T(n-1)?
- Is it 487 operations? Perhaps 515,243 operations?
- We DON'T know!

Recurrence Relations

- Back to Factorial N...
- The problem is only "solved" once we remove all $\mathrm{T}(\ldots$)'s from the right side of the equation
- Again, here's the equation:

$$
T(n)=T(n-1)+2
$$

- So $T(n-1)$ needs to go bye-bye
- Then the problem is in its "closed form" and is solved.
- So how do we make this happen?

Recurrence Relations

- Back to Factorial N
- We need to solve $T(n)$ in terms of n
- For the recurrence relation,
- $T(n)=T(n-1)+2$
- Do we know what $T(n-1)$ equals?
- Does it equal 8,572 operations?
- Who knows? We surely don't know!
- So we want to REDUCE the right side
- specifically, the $T(n-1)$
- UNTIL we get to that which we do know!

Recurrence Relations

- Back to Factorial N
- We need to solve $T(n)$ in terms of n
- Starting from this equation:

$$
T(n)=T(n-1)+2
$$

- We reduce the right side until we get to $T(1)$.

Why?

- CUZ we know T(1).
- What is $T(1)$?
- It is 1! ...this was from our Recurrence Relation earlier.
- So then we can put 1 in the place of $T(1)$
- Effectively eliminating all $\mathrm{T}(\ldots)$ s from the right side of eqn!

Recurrence Relations

- Back to Factorial N
- We need to solve $T(n)$ in terms of n

$$
T(n)=T(n-1)+2
$$

- We reduce the right side until we get to $T(1)$.
- Here's the idea:

$\mathrm{T}(\mathrm{n}-1)$	if we assume	$\mathrm{T}(100-1)$
$\mathrm{T}(\mathrm{n}-2)$	that $\mathrm{n}=100$,	$\mathrm{T}(100-2)$
$\mathrm{T}(\mathrm{n}-3)$	we have \ldots	$\mathrm{T}(100-3)$
\ldots	\ldots	
$\mathrm{T}(\mathrm{n}$-something $)=\mathrm{T}(1)$	$\mathrm{T}(100-99)=\mathrm{T}(1)$	

Recurrence Relations

- Back to Factorial N
- We need to solve $T(n)$ in terms of n
$T(n)=T(n-1)+2$
- We reduce the right side until we get to $T(1)$.
- So, we do this in steps

1) We replace \mathbf{n} with $\mathbf{n - 1}$ on both sides of the equation
2) We plug the result back in
3) And then we do it again and again and again and again...
till a "light goes off" and we see something

Recurrence Relations

Or you're

 like this guy, whose lights never turned on.

Recurrence Relations

- Back to Factorial N

- $T(n)=T(n-1)+2 \quad$----- call this Eq. 1
- Replace n with $\mathrm{n}-1$

DON'T overcomplicate this step.
It is REALLY this SIMPLE.
Wherever you see an n in Eq. 1, simply replace with $\mathrm{n}-1$.
So if you have $T(n-1)$ and you replace that n with an $n-1$, you will get $T((n-1)-1)$, which equates to $T(n-2)$.

Simple right?
Right.

Recurrence Relations

- Back to Factorial N

- $T(n)=T(n-1)+2 \quad$----- call this Eq. 1
- Replace n with $n-1$
- $\mathrm{T}(\mathrm{n}-1)=\mathrm{T}(\mathrm{n}-2)+2 \quad----$ call this Eq. 2
- Now substitute the result of Eq. 2 into Eq. 1
- $\mathrm{T}(\mathrm{n})=\mathrm{T}(\mathrm{n}-2)+2+2$

Wait? How'd we get this?
$T(n)=T(n-1)+2 \quad----$ Eq. 1
And from Eq. 2, we also have, $\mathrm{T}(\mathrm{n}-1)=\mathrm{T}(\mathrm{n}-2)+2$
So we simply plug in the result (the right side) of the Eq. 2 into Eq. 1 where we see T(n-1)
$T(n)=T(n-1)+2$
$T(n)=(T(n-2)+2)+2 \quad$ removing parantheses, we get
$T(n)=T(n-2)+2+2$

Recurrence Relations

- Back to Factorial N
$-T(n)=T(n-1)+2 \quad----$ call this Eq. 1
- Replace n with $n-1$
- $T(n-1)=T(n-2)+2 \quad$----- call this Eq. 2
- Now substitute the result of Eq. 2 into Eq. 1
- $\mathrm{T}(\mathrm{n})=\mathrm{T}(\mathrm{n}-2)+2+2$
- We can look at $2+2$ as $2 \star 2 \ldots$...you'll see why we do this shortly
- $T(n)=T(n-2)+2^{*} 2 \quad----$ call this Eq. 3
- So what did we do:
- We made ANOTHER equation for T(n)
- But this one is in terms of T(n-2)
- REDUCED from being in terms of T(n-1)

Recurrence Relations

- Back to Factorial N
- So we now have this new equation for $T(n)$:
- $T(n)=T(n-2)+2 \star 2$
- Are we done?
- NO! Cuz we still have T(...)s on the right
- And do we know how many operations are performed by $\mathrm{T}(\mathrm{n}-2)$?
- Perhaps 5,219 operations? We don't know!
- So we now need to REDUCE this equation further
- We have $T(n)$ in terms of $T(n-2)$
- We want to get $T(n)$ in terms of $T(n-3)$

Recurrence Relations

- Back to Factorial N
- So we now need to REDUCE this equation further
- We want to get $T(n)$ in terms of $T(n-3)$
- How are we going to do this?
- We currently have $T(n)=T(n-2)+2 * 2$
- We want to develop an equation with $T(n-2)$ on the left
- and in terms of T(n-3)
- So, in Eq. 2, once again, replace n with $\mathrm{n}-1$
- $T(n-1)=T(n-2)+2 \quad$----- Eq. 2
- Replace n with $n-1$
- $T(n-2)=T(n-3)+2 \quad$----- call this Eq. 4
- Ah! So we now have our "T(n-2)" equation

Recurrence Relations

- Back to Factorial N
- Now substitute the result of Eq. 4 into Eq. 3
- $T(n-2)=T(n-3)+2 \quad----$ Eq. 4
- $T(n)=T(n-2)+2 * 2 \quad----$ Eq. 3
- $T(n)=T(n-3)+2+2 * 2$
- $2+2 \star 2$ really is $2 * 3$...again, you'll see why we do this in a bit
- $T(n)=T(n-3)+2 * 3$
- Again, what did we accomplish?
- We made ANOTHER equation for $T(n)$
- But this one is in terms of T(n-3)
- REDUCED from being in terms of T(n-2)

Recurrence Relations

- Back to Factorial N

- Thus far, we have three equations with $T(n)$ on the left side
- $T(n)=T(n-1)+2 * 1$
- Note that I added the *1 next to the 2
- This doesn't change anything right?
- 2*1 is the same as just plain 'ole 2
- You'll see why we did this in a second.
- $T(n)=T(n-2)+2 * 2$
- $T(n)=T(n-3)+2 * 3$

Recurrence Relations

- Back to Factorial N
- Is there a pattern developing? Perhaps some "light" going off?
- $1^{\text {st }}$ step of recursion, we have: $T(n)=T(n-1)+2 * 1$
- $2^{\text {nd }}$ step of recursion, we have: $T(n)=T(n-2)+2 * 2$
- $3^{\text {rd }}$ step of recursion, we have: $T(n)=T(n-3)+2 * 3$
- If we followed the process one more time, we get
- $T(n)=T(n-4)+2 * 4 \quad \ldots$ for the $4^{\text {th }}$ step of the recursion
- So on the kth step/stage of the recursion, we get a generalized recurrence relation:

$$
-T(n)=T(n-k)+2 * k
$$

Recurrence Relations

- Back to Factorial N
- So on the kth step/stage of the recursion, we get a generalized recurrence relation:
- $T(n)=T(n-k)+2 * k$
- WHEW!
- That was a lot!
- But we're finally done! Right.?.
- WRONG!!! Why aren't we done yet?
- CUZ we still have T(...)s on the right side of the equation
- So now we need to actually solve this generalized recurrence relation

Recurrence Relations

- Back to Factorial N
- We need to solve this generalized rec. relation
- $T(n)=T(n-k)+2 * k$
- How?
- Remember we said we wanted to reduce the right side of the equation to $\mathrm{T}(1)$
- Again, why?
- Because we know what T(1) equals...it equals 1!
- So we have $T(n-k)$ and we want $T(1)$
- Simple! Let n-k = 1
- Solve for k leaving $\mathrm{k}=\mathrm{n}$ - 1
- Plug back into equation

Recurrence Relations

- Back to Factorial N
- We need to solve this generalized rec. relation
- $T(n)=T(n-k)+2 * k$
- $k=n-1$
- Plug into above equation
- $T(n)=T(n-(n-1))+2(n-1)=T(1)+2(n-1)$
- And we know that $\mathrm{T}(1)=1$
- Therefore....
- $\mathrm{T}(\mathrm{n})=2(\mathrm{n}-1)+1=2 \mathrm{n}-1$
- And we are done!
- Right side does not have any T(...)'s
- This rec. relation is now solved!
- This algorithm runs in O(n), or LINEAR time.

Brief Interlude: Human Stupidity

Recurrence Relations

- Let's look at a function that calculates powers

```
int power (int x, int n) {
    // calculates the value of x^n
            if (n == 0)
            return 1;
            if (n == 1)
            return x;
        if (n is even)
        return power(x*x, n/2);
        else // if n is odd
        return power(x*x, n/2)*x;
    }
- What's going on in this problem?
```

- At every step, the problem size is reduced by half
- If n is even, 2 arithmetic operations are computed
- If n is odd, 3 arithmetic operations are computed

Recurrence Relations

- Power Function
- What's going on in this problem?
- At every step, the problem size is reduced by half
- If n is even, 2 arithmetic operations are computed
- If n is odd, 3 arithmetic operations are computed
- When computing time complexity, we assume the worst case
- We assume n is odd at each step
- So 3 operations are assumed to be always needed
- Thus, $T(n)$ can be expressed as the sum of $T(n / 2)$ and the 3 operations needed at each step
$T(n)=T(n / 2)+3$
$T(1)=1$

Recurrence Relations

- Power Function
- So here's our recurrence relation:
$T(n)=T(n / 2)+3$
$T(1)=1$
- We need to solve this by removing all $T(\ldots$)'s from the right side.
- $\mathrm{T}(\mathrm{n} / 2)$ needs to hit the road

Then the problem is in its "closed form" and is solved.

Recurrence Relations

- Power Function

- We need to solve $T(n)$ in terms of n
- Starting from this equation
$T(n)=T(n / 2)+3$
We reduce the right side until we get to $\mathrm{T}(1)$.
Why?
- $\mathrm{T}(1)$ is known to us (it equals 1)
- We do this in steps
- We replace n with $\mathbf{n} / \mathbf{2}$ on both sides of the equation
- We plug the result back in
- And then we do it again...till a "light goes off" and we see something

Recurrence Relations

- Power Function
- This time we'll do a slightly different order of things...just so you see two different ways
- Start with the base recurrence relation
- $T(n)=T(n / 2)+3 \quad----$ call this Eq. 1
- Replace n with $\mathrm{n} / 2$, and go ahead and do this several times
- $T(n / 2)=T(n / 4)+3 \quad----$ call this Eq. 2
- $T(n / 4)=T(n / 8)+3 \quad$----- call this Eq. 3
- $T(n / 8)=T(n / 16)+3 \quad$----- call this Eq. 4
- Now we substitute each one of these back into Eq. 1 and hopefully see a pattern

Recurrence Relations

- Power Function

- Here's the four current equations we have:

$$
\begin{array}{rll}
-T(n)=T(n / 2)+3 & ----- \text { Eq. } 1 \\
-T(n / 2)=T(n / 4)+3 & ----- \text { Eq. } 2 \\
-T(n / 4)=T(n / 8)+3 & ---- \text { Eq. } 3 \\
-T(n / 8)=T(n / 16)+3 & ----E
\end{array}
$$

- Now substitute the result of Eq. 2 into Eq. 1
- $\mathrm{T}(\mathrm{n})=\mathrm{T}(\mathrm{n} / 4)+3+3$
- We can look at $3+3$ as $3 * 2$....you remember why...right.?.
- $T(n)=T(n / 4)+3 * 2 \quad$----- call this Eq. 5

Recurrence Relations

- Power Function
- Here's the four current equations we have:

$$
\begin{array}{ll}
-T(n)=T(n / 2)+3 & ----- \text { Eq. } 1 \\
-T(n / 2)=T(n / 4)+3 & ----- \text { Eq. } 2 \\
-T(n / 4)=T(n / 8)+3 & ---- \text { Eq. } 4 \\
-T(n / 8)=T(n / 16)+3 & --- \text { Eq. }
\end{array}
$$

- Now substitute the result of Eq. 3 into Eq. 5
- $T(n)=T(n / 8)+3+3 * 2$
- $T(n)=T(n / 8)+3 * 3 \quad-----$ call this Eq. 6
- One more substitution of Eq. 4 into Eq. 6:
- $T(n)=T(n / 16)+3 * 4 \quad----$ call this Eq. 7

Recurrence Relations

- Power Function
- Now show all the equations we developed with $T(n)$ on the left...is there a pattern developing?

$$
\begin{array}{ll}
-T(n)=T(n / 2)+3^{\star 1} & =T\left(n / 2^{1}\right)+3^{\star} 1 \\
-T(n)=T(n / 4)+3^{\star 2} & =T\left(n / 2^{2}\right)+3^{\star} 2 \\
-T(n)=T(n / 8)+3^{\star 3} & =T\left(n / 2^{3}\right)+3^{\star} 3 \\
T(n)=T(n / 16)+3^{\star 4} & =T\left(n / 2^{4}\right)+3^{\star} 4
\end{array}
$$

- So on the kth step/stage of the recursion, we get a generalized recurrence relation:

$$
=T(n)=T\left(n / 2^{k}\right)+3^{*} k
$$

- We're not done yet right.
- Cuz we need to get rid of the $\mathrm{T}\left(\mathrm{n} / 2^{\mathrm{k}}\right)$

Recurrence Relations

- Power Function

- We need to solve this generalized rec. relation
- $T(n)=T\left(n / 2^{k}\right)+3^{*} k$
- How?
- Remember we said we wanted to reduce the right side of the equation to $\mathrm{T}(1)$
- Again, why?
- Because we know what $T(1)$ equals...it equals 1 !
- So we have $T\left(n / 2^{k}\right)$ and we want $T(1)$
- Simple! Let $\mathrm{n}=2^{\mathrm{k}}$
- Solve for k
- Take log base 2 of both sides
- $k=\log n$

Recurrence Relations

- Power Function

- We need to solve this generalized rec. relation
- $T(n)=T\left(n / 2^{k}\right)+3^{*} k$
- So $n=2^{k}$ and $k=\log n$
- Plug into above equation
- $T(n)=T(1)+3(\log n)$
- And we know that $T(1)=1$
- Therefore....
- $\mathrm{T}(\mathrm{n})=1+3 \log (\mathrm{n})$
- And we are done! This algorithm runs in logarithmic time.
- Right side does not have any T(...)'s
- This rec. relation is now solved!

Recurrence Relations

WASN'T
 THAT
 (Let's admit it: that sucked!)

Daily Demotivator

Recurrence Relations

Computer Science Department University of Central Florida

COP 3502 - Computer Science I

