More Algorithm Analysis

Computer Science Department University of Central Florida

COP 3502 - Computer Science I

Announcements

- Comment on Class Workload thus far:
- \# of hours expected of a full-time college student:
- Just like a full-time job: around 40 or 50 or so hours/week
- It is said that for every hour in class,
- You can expect up to three hours of work outside class
- Now do the math:
- If you are registered for 12 credits
- That adds up to 36 hours of outside-class work per week
- For a total of 48 hours per week
- Now ask yourself:
- For this class, do you really put in 9 hours/week outside of the class?

Announcements

Comment on Class Workload thus far:

- Now ask yourself:
- For this class, do you really put in 9 hours/week outside of the class?
- Not even close!
- If there's no program due, the average student puts in ZERO hours per week outside class
- They don't even review notes for a MINUTE!
- So how long then does a program take?
- Let's even say 10 hours (which is high for most students)
- Since they are due every two weeks (or so)
- That adds up to 5 hours per week that you invest (at a max)
- Leaving still 4 hours per week of study time!

Program 3

- Program 3: Match-Making
- Given a list of n men and n women
- Also given the men's ratings of the women
- And the women's ratings of the men
- Find the best overall matching of men and women in the group
- So you must find ALL possible matchings

Program 3

- Program 3: Match-Making
- Example:

How many matchings will there be?

- Following chart shows how the men rate the women:

	Diana	Ellen	Fran
Adam	4	8	7
Bob	6	7	5
Carl	5	9	6

- Following chart shows how the women rate the men:

	Adam	Bob	Carl
Diana	7	6	8
Ellen	6	5	9
Fran	4	7	3

Program 3

- Program 3: Match-Making
- Example:
- Here are the six (ALL) matchings:

M1	$\underline{\mathbf{S}}$	M2	$\underline{\mathbf{S}}$	M3	$\underline{\mathbf{S}}$
Adam+Diana	4	Adam+Diana	4	Adam+Ellen	6
Bob+Ellen	5	Bob+Fran	5	Bob+Diana	6
Carl+Fran	3	Carl+Ellen	9	Carl+Fran	3
Total	12		18		15

M4	S	M5	$\underline{\mathbf{S}}$	M6	$\underline{\mathbf{S}}$
Adam+Ellen	6	Adam+Fran	4	Adam+Fran	4
Bob+Fran	5	Bob+Diana	6	Bob+Ellen	5
Carl+Diana	5	Carl+Ellen	9	Carl+Diana	5
Total	16		19		14

Program 3

- Program 3: Match-Making
- Example:

This is clearly the best match!

- Here are the six (ALL) matchings:

M1	$\underline{\mathbf{S}}$	M2	$\underline{\mathbf{S}}$	M3	$\underline{\mathbf{S}}$
Adam+Diana	4	Adam+Diana	4	Adam+Ellen	6
Bob+Ellen	5	Bob+Fran	5	Bob+Diana	6
Carl+Fran	3	Carl+Ellen	9	Carl+Fran	3
Total	12		18		15

| M4 | \underline{S} | M5 | $\underline{\text { S }}$ | M6 | $\underline{\mathbf{S}}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Adam+Ellen | 6 | Adam+Fran | 4 | Adam+Fran | 4 |
| Bob+Fran | 5 | Bob+Diana | 6 | Bob+Ellen | 5 |
| Carl+Diana | 5 | Carl+Ellen | 9 | Carl+Diana | 5 |
| Total | 16 | | 19 | | 14 |

Program 3

- Program 3: Match-Making

- Must use recursion
- Must use permutations (this SAME algorithm)
- Points to ponder:
- The assignment says that you will try ALL possible matchings
- So think about what it is that you need to permute
- And once you finish any given permutation
- k == \# of people to permute
- What do you do at this point?
- Compute the likeability quotient
- Is it better than previous best quotient?
- Is it a tie? If so, what to do?

Big-O Notation

\square What is Big O?

- Big O comes from Big-O Notation
- In C.S., we want to know how efficient an algorithm is...how "fast" it is
- More specifically...we want to know how the performance of an algorithm responds to changes in problem size
- The goal is to provide a qualitative insight on the \# of operations for a problem size of n elements.
- And this total \# of operations can be described with a mathematical expression in terms of n.
- This expression is known as Big-O

More Algorithm Analysis

- Examples of Analyzing Code:
- We now go over many examples of code fragments
- Each of these functions will be analyzed for their runtime in terms of the variable n
- Utilizing the idea of Big-O,
- determine the Big-O running time of each

More Algorithm Analysis

- Example 1:
- Determine the Big O running time of the following code fragment:

```
for (k = 1; k <= n/2; k++) {
            sum = sum + 5;
}
for (j = 1; j <= n*n; j++) {
    delta = delta + 1;
}
```


More Algorithm Analysis

- Example 1:

- So look at what's going on in the code:
- We care about the total number of REPETITIVE operations.
- Remember, we said we care about the running time for LARGE values of n
- So in a for loop with n as part of the comparison value determining when to stop for ($k=1$; $k<=\underline{n} / 2$; $k++$)
- Whatever is INSIDE that loop will be executed a LOT of times
- So we examine the code within this loop and see how many operations we find
- When we say operations, we're referring to mathematical operations such as $+,-, *, l$, etc.

More Algorithm Analysis

- Example 1:

- So look at what's going on in the code:
- The number of operations executed by these loops is the sum of the individual loop operations.
- We have 2 loops,
- The first loop runs n/2 times
- Each iteration of the first loop results in one operation
- The + operation in: sum = sum + 5;
- So there are $n / 2$ operations in the first loop
- The second loop runs n^{2} times
- Each iteration of the second loop results in one operation
- The + operation in: delta = delta + 1;
- So there are n^{2} operations in the second loop.

More Algorithm Analysis

- Example 1:

- So look at what's going on in the code:
- The number of operations executed by these loops is the sum of the individual loop operations.
- The first loop has $n / 2$ operations
- The second loop has n^{2} operations
- They are NOT nested loops.
- One loop executes AFTER the other completely finishes
- So we simply ADD their operations
- The total number of operations would be $n / 2+n^{2}$
- In Big-O terms, we can express the number of operations as $\mathrm{O}\left(\mathrm{n}^{2}\right)$

More Algorithm Analysis

- Example 2:
- Determine the Big O running time of the following code fragment:

```
int func1(int n) {
    int i, j, x = 0;
    for (i = 1; i <= n; i++) {
        for (j = 1; j <= n; j++) {
        }
    }
    return x;
}
```


More Algorithm Analysis

- Example 2:
- So look at what's going on in the code:
- We care about the total number of REPETITIVE operations
- We have two loops
- AND they are NESTED loops
- The outer loop runs n times
- From i = 1 up through n
- How many operations are performed at each iteration?
- Answer is coming...
- The inner loop runs n times
- From j = 1 up through n
- And only one operation ($\mathrm{x}++$) is performed at each iteration

More Algorithm Analysis

- Example 2:

- So look at what's going on in the code:
- Let's look at a couple of iterations of the OUTER loop:
- When i = 1, what happens?
- The inner loop runs n times
- Resulting in n operations from the inner loop
- Then, i gets incremented and it becomes equal to 2
- When $\mathrm{i}=2$, what happens?
- Again, the inner loop runs n times
- Again resulting in n operations from the inner loop
- We notice the following:
- For EACH iteration of the OUTER loop,
- The INNER loop runs n times
- Resulting in n operations

More Algorithm Analysis

- Example 2:

- So look at what's going on in the code:
- And how many times does the outer loop run?
- n times
- So the outer loop runs n times
- And for each of those n times, the inner loop also runs n times
- Resulting in n operations
- So we have n operations per iteration of OUTER loop
- And outer loop runs n times
- Finally, we have n*n as the number of operations
- We approximate the running time as $\mathrm{O}\left(\mathrm{n}^{2}\right)$

More Algorithm Analysis

- Example 3:
- Determine the Big O running time of the following code fragment:

```
int func3(int n) {
    int i, x = 0;
    for (i = 1; i <= n; i++)
        x++;
    for (i = 1; i<=n; i++)
        x++;
    return x;
}
```


More Algorithm Analysis

- Example 3:
- So look at what's going on in the code:
- We care about the total number of REPETITIVE operations
- We have two loops
- They are NOT nested loops
- The first loop runs n times
- From i = 1 up through n
- only one operation $(x++)$ is performed at each iteration
- How many times does the second loop run?
- Notice that i is indeed reset to 1 at the beginning of the loop
- Thus, the second loop runs n times, from $i=1$ up through n
- And only one operation ($\mathrm{x}++$) is performed at each iteration

More Algorithm Analysis

- Example 3:

- So look at what's going on in the code:
- Again, the loops are NOT nested
- So they execute sequentially (one after the other)
- Therefore:
- Our total runtime is on the order of $n+n$
- Which of course equals 2 n
- Now, in Big O notation
- We approximate the running time as $\mathrm{O}(\mathrm{n})$

More Algorithm Analysis

- Example 4:
- Determine the Big O running time of the following code fragment:

```
int func4(int n) {
        while (n > 0) {
        printf("%d", n%2);
        n = n/2;
    }
}
```


More Algorithm Analysis

- Example 4:
- So look at what's going on in the code:
- We have one while loop
- You can't just look at this loop and say it iterates n times or n/2 times
- Rather, it continues to execute as long as n is greater than 0
- The question is: how many iterations will that be?
- Within the while loop
- The last line of code divides the input, n, by 2
- So n is halved at each iteration of the while loop
- If you remember, we said this ends up running in $\log \mathrm{n}$ time
- Now let's look at how this works

More Algorithm Analysis

- Example 4:

- So look at what's going on in the code:
- For the ease of the analysis, we make a new variable
- originalN:
- originalN refers to the value originally stored in the input, n
- So if n started at 100 , originalN will be equal to 100
- The first time through the loop
- n gets set to originalN/2
- If the original n was 100, after one iteration n would be 100/2
- The second time through the loop
- n gets set to originalN/4
- The third time through the loop
- n gets set to originalN/8

More Algorithm Analysis

- Example 4:
- So look at what's going on in the code:
- In general, after kiterations
- n gets set to originalN/2k
- The algorithm ends when original $\mathrm{N} / 2^{\mathrm{k}}=1$, approximately
- We now solve for k
- Why?
- Because we want to find the total \# of iterations
- Multiplying both sides by 2^{k}, we get originalN $=2^{k}$
- Now, using the definition of logs, we solve for k
- $k=\log$ originalN
- So we approximate the running time as $O(\log n)$

Brief Interlude: Human Stupidity

More Algorithm Analysis

- Example 5:
- Determine the Big O running time of the following code fragment:

```
int func5(int** array, int n)
    int i = 0, j = 0;
    while (i < n) {
        while (j < n && array[i][j] == 1)
        j++;
        i++;
    }
    return j;
}
```


More Algorithm Analysis

- Example 5:
- So look at what's going on in the code:
- At first glance, we see two NESTED loops
- This can often indicate an $\mathrm{O}\left(\mathrm{n}^{2}\right)$ algorithm
- But we need to look closer to confirm
- Focus on what's going on with i and j

```
int func5(int** array, int n)
    int i = 0, j = 0;
    while (i < n) {
        while (j < n && array[i][j] == 1)
        j++;
    i++;
    }
```


More Algorithm Analysis

- Example 5:
- So look at what's going on in the code:
- Focus on what's going on with i and j
- i and j clearly increase (from the j++ and i++)
- BUT, they never decrease
- AND, neither ever gets reset to 0

```
int func5(int** array, int n)
    int i = 0, j = 0;
    while (i < n) {
        while (j < n && array[i][j] == 1)
        j++;
    i++;
    }
```


More Algorithm Analysis

- Example 5:
- So look at what's going on in the code:
- And the OUTER while loop ends once i gets to n
- So, what does this mean?
- The statement $i++$ can never run more than n times
- And the statement $j++$ can never run more than n times

```
int func5(int** array, int n) {
int i = 0, j = 0;
while (i < n) {
    while (j < n && array[i][j] == 1)
    j++;
    i++;
}
```


More Algorithm Analysis

- Example 5:
- So look at what's going on in the code:
- The MOST number of times these two statements can run (combined) is 2 n times
- So we approximate the running time as $O(n)$

```
int func5(int** array, int n)
    int i = 0, j = 0;
    while (i < n) {
        while (j < n && array[i][j] == 1)
        j++;
    i++;
    }
```


More Algorithm Analysis

- Example 6:
- Determine the Big O running time of the following code fragment:
- What's the one big difference here???

```
int func6(int** array, int n) {
    int i = 0, j;
    while (i < n) {
        j = 0;
        while (j < n && array[i][j] == 1)
                        j++;
        i++;
    }
    return j;
}
```


More Algorithm Analysis

- Example 6:
- So look at what's going on in the code:
- The difference is that we RESET j to 0 a the beginning of the OUTER while loop

```
int func6(int** array, int n) {
    int i = 0, j;
    while (i < n) {
        j = 0;
        while (j < n && array[i][j] == 1)
                        j++;
        i++;
    }
    return j;
}
```


More Algorithm Analysis

- Example 6:

- So look at what's going on in the code:
- The difference is that we RESET j to 0 a the beginning of the OUTER while loop
- How does that change things?
- Now j can iterate from 0 to n for EACH iteration of the OUTER while loop
- For each value of i
- This is similar to the $2^{\text {nd }}$ example shown
- So we approximate the running time as $O\left(n^{2}\right)$

More Algorithm Analysis

- Example 7:
- Determine the Big O running time of the following code fragment:

```
int func7(int A[], int sizeA, int B[], int sizeB) {
    int i, j;
    for (i = 0; i < sizeA; i++)
    for (j = 0; j < sizeB; j++)
        if (A[i] == B[j])
                                return 1;
    return 0;
}
```


More Algorithm Analysis

- Example 7:
- So look at what's going on in the code:
- First notice that the runtime here is NOT in terms of n
- It will be in terms of sizeA and sizeB
- And this is also just like Example 2
- The outer loop runs sizeA times
- For EACH of those times,
- The inner loop runs sizeB times
- So this algorithm runs sizeA*sizeB times
- We approximate the running time as O(sizeA*sizeB)

More Algorithm Analysis

- Example 8:
- Determine the Big O running time of the following code fragment:

```
int func8(int A[], int sizeA, int B[], int sizeB) {
    int i, j;
    for (i = 0; i < sizeA; i++) {
            if (binSearch(B, sizeB, A[i]))
                        return 1;
    }
    return 0;
}
```


More Algorithm Analysis

- Example 8:

- So look at what's going on in the code:
- Note: we see that we are calling the function binSearch
- As discussed previously, a single binary search runs in O(log n) time
- where n represents the number of items within which you are searching
- Examining the for loop:
- The for loop will execute sizeA times
- For EACH iteration of this loop
- a binary search will be run
- We approximate the running time as O(sizeA*log(sizeB))

More Algorithm Analysis

WASN'T
 THAT
 SWEET!

Daily Demotivator

Let's Agree to Respect Each Other's Views, No Matter How Wrong Youss May Be.

More Algorithm Analysis

Computer Science Department University of Central Florida

COP 3502 - Computer Science I

