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Counting Systems – Basic Info

 Regular Counting System
 Known as Decimal
 also known as base 10
 Do you know why it is called base 10?

 If you said, “because it has ten counting digits”:
 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9

 You are right!
 To count in base ten, you go from 0 to 9
 Then you count in combinations of two digits starting 

with 10 all the way to 99
 After 99 comes three-digit combinations from 100 –

999, etc.
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Counting Systems – Basic Info

 Regular Counting System
 Let’s examine a decimal number:

 When we break down this number, we have:
 2 “thousands” + 7 “hundreds” + 1 “tens” + 3 “ones
 2000 + 700 + 10 + 3

 Let’s see, in detail, how we get this

2713

Thousands place Hundreds place Tens place Ones place
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Counting Systems – Basic Info

 Regular Counting System
 The decimal number 2713:
 When we break down this number, we have:

 2000 + 700 + 10 + 3

 Where does the 2000 come from?
 How do we get 2000?

 Mathematically,
 We said this means we have two “thousands”
 A thousand is 1000
 How do we represent 1000, in terms of 10?
 So 2000 is the same as 2 x 103

103

= 2 x 1000 = 2000
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Counting Systems – Basic Info

 Regular Counting System
 The decimal number 2713:
 Similarly,

 The next digit, 7, means that we have 7 “hundreds”
 We have 7, “100”s

 Mathematically, how do we represent 100 in terms of 10?
 102

 So 700 comes from 7x102 = 7x100 = 700
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Counting Systems – Basic Info

 Regular Counting System
 The decimal number 2713:
 Next:

 The next digit, 1, means that we have 1 “ten”
 We have 1, “10”
 Mathematically, we represent this as 101

 So 10 comes from 1x101 = 1x10 = 10

 Finally:
 The last digit, 3, means that we have 3 “ones”

 We have 3, “1”s
 How do we represent 1 in terms of 10?

 So 3 comes from 3x100 = 3x1 = 3
As 100.
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Counting Systems – Basic Info

 Regular Counting System
 The decimal number 2713:
 Putting this all together,

 271310 = 2 x 103 + 7 x 102 + 1 x 101 + 3 x 100

 What we learn from this:
 Each digit’s value is determined by the place it is in
 Each place is a perfect power of the base
 With the least significant at the end
 Counting up, by 1, as you go through the number from 

right to left
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Counting Systems – Basic Info

 Other Counting Systems
 At first glance, it may seem that this would be the 

only possible number system
 That is, using 10 digits (0 – 9)

 Turns out, the number of digits used is arbitrary
 We could have chosen to use only 5 digits

 0 – 4

 Look at how we determine the value of a number:
 3145

 Guess what???
 We just converted from base 5 to base 10

(base 5 system)

= 8410= 3 x 52 + 1 x 51 + 4 x 50
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Counting Systems – Basic Info

 CONVERT from ANY base to base 10
 This example illustrates how we can convert from 

a different base to base 10
 In general, we write the conversion as follows:

 dn-1dn-2…d2d1d0 (in base b) = dn-1xbn-1 + dn-2xbn-2 + … + d2xb2 + d1xb + d0

 Note:
 b based to the 1 and 0 powers were simplified above

 Couple quick examples:
 7819 = 7x92 + 8x91 + 1x90 = 64010

 11101012 = 1x26 + 1x25 + 1x24 + 0x23 + 1x22 + 0x21 + 
1x20 = 11710

 This last one was the very common base 2 (binary)
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Counting Systems – Basic Info

 Binary (aka base 2)
 MOST common in computer science
 Why?

 Cuz all your computer “innards” are represented in binary
 All software ultimately boils down to a binary representation

 So here’s a little binary chart to get you going:
Decimal Binary Decimal Binary
1 0001 9 1001
2 0010 10 1010
3 0011 11 1011
4 0100 12 1100
5 0101 13 1101
6 0110 14 1110
7 0111 15 1111
8 1000 16 10000
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Counting Systems – Basic Info

 Hexadecimal
 The most common base with more than 10 digits

 Aka base 16
 Meaning there are 16 counting digits
 WAIT!!!
 But we only have 10 possible digits to use!

 0 through 9
 So that means we are six digits short!

 That is correct.
 It was decided to use the following six additional “digits”:

 A, B, C, D, E, and F
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Counting Systems – Basic Info

 Hexadecimal
 base 16:  use 16 counting digits

 It was decided to use the following six additional “digits”:
 A, B, C, D, E, and F

 A represents the value 10, B is 11, C is 12, D is 13, E is 
14, and F is 15

 So here is the single digit sequence for base 16:
 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
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Counting Systems – Basic Info

 Hexadecimal
 Benefit of Hexadecimal:

 Everything internally (in a computer) is stored in base 2
 binary

 However, when we view contents of memory
 Or when we assign values

 Such as RGB values for colors
 We often view numbers in hexadecimal

 So it is important to be familiar with hexadecimal
 Also important to be able to convert to and from 

hexadecimal to other bases
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Base Conversion Methods

 Conversion from Hexadecimal to Decimal
 This is done EXACTLY the same as shown 

previously
 A3D16

= 10x162 + 3x161 + 13x160 = 262110.
= Ax162 + 3x161 + Dx160

= 262110.
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Base Conversion Methods

 Conversion from Hexadecimal to Binary
 Note:

 16, as in “base 16”, is a PERFECT power of 2
 This makes conversion to base 2 (binary) very EASY
 Why?
 Each hexadecimal digit is perfectly represented by 4 

binary digits
 Does that make sense?
 A base 16 digit can be up to F (which is 15)
 So, in order to represent, up to 15, in binary

 We MUST have 4 binary digits
 From the chart earlier, we know that 1510 is 11112
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Base Conversion Methods

 Conversion from Hexadecimal to Binary
 Note:

 This allows us to make the following “purty” chart showing 
the conversions from hexadecimal to binary:

 Using this, we can easily convert from base 16 to base 2 
 A3D16 = 1010 0011 11012

 F4BC7216 = 1111 0100 1011 1100 0111 0010 0001 01102

Hex: 0 1 2 3 4 5 6 7
Bin: 0000 0001 0010 0011 0100 0101 0110 0111
Hex: 8 9 A B C D E F
Bin: 1000 1001 1010 1011 1100 1101 1110 1111
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Base Conversion Methods

 CONVERT from ANY base to base 10
 We already went over this one
 In general, the conversion is as follows:

 dn-1dn-2…d2d1d0 (in base b) = dn-1xbn-1 + dn-2xbn-2 + … + d2xb2 + d1xb1 + d0xb0

 Some quick examples:
 2467 = 2x72 + 4x71 + 6x70 = 13210

 7819 = 7x92 + 8x91 + 1x90 = 64010

 301224 = 3x44 + 0x43 + 1x42 + 2x41 + 2x40 = 79410

 11101012 = 1x26 + 1x25 + 1x24 + 0x23 + 1x22 + 0x21 + 
1x20 = 11710

 This last one was the very common base 2 (binary)
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Base Conversion Methods

 Conversion from Decimal to Binary
 Given the number 2710

 Convert it to binary

 Basically, we start by dividing 27 by 2
 Integer Division!

 Remember, 27/2 would be 13
 So, 27/2 is 13 with a remainder of 1

 We then divide 13 by 2
 13/2 is 6 with a remainder of 1

 Continue this process until you get 1
 At that point, you will have 1/2 is 0 with a remainder of 1
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Base Conversion Methods

 Conversion from Decimal to Binary
 Convert 2710 to binary

 You stop when you get 0 as an answer
 Of course, the final remainder will be 1

 Now, how do you determine the equivalent binary # ?
 Read the remainders from bottom to top!

27/2 = 13 with a remainder of 1
13/2 = 6 with a remainder of 1
6/2 = 3 with a remainder of 0
3/2 = 1 with a remainder of 1
1/2 = 0 with a remainder of 1

So, 2710 is 
the same 
as 110112
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Base Conversion Methods

 Conversion from Decimal to Binary
 Another example:  Convert 11710 to binary

 You stop when you get 0 as an answer
 Read the remainders from bottom to top to get binary #

117/2 = 58 with a remainder of 1
58/2 = 29 with a remainder of 0
29/2 = 14 with a remainder of 1
14/2 = 7 with a remainder of 0
7/2 = 3 with a remainder of 1

So, 11710 is 
the same as 

11101012

3/2 = 1 with a remainder of 1
1/2 = 0 with a remainder of 1
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Base Conversion Methods

 Conversion from Decimal to Any Other Base
 The previous example worked great for base 2
 Turns out that this method is not specific to base 2
 Meaning, the same logic can be applied to convert 

from decimal to ANY other base!

 Let’s look at a couple of examples…
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Base Conversion Methods

 Conversion from Decimal to Any Other Base
 Convert 38110 to base 16 (hexadecimal)

 Start by dividing 381 by the BASE (to convert to)
 SAME idea:  you stop when you get 0 as an answer

 The final remainder could be anything 1 through 15 (F)
 Now, how do you determine the equivalent base 16 # ?

 Read the remainders from bottom to top!

381/16 = 23 with a remainder of 13  (D)
23/16 = 1 with a remainder of 7
1/16 = 0 with a remainder of 1

So, 38110 is 
the same 
as 17D16



Base Conversion page 23

Base Conversion Methods

 Conversion from Decimal to Any Other Base
 Convert 17510 to base 3 (ternary)

 Again, start by dividing 175 by the BASE (to convert to)
 SAME idea:  you stop when you get 0 as an answer

 In this case, the final remainder could be 1 or 2
 Now, how do you determine the equivalent base 3 # ?

 Read the remainders from bottom to top!

175/3 = 58 with a remainder of 1
58/3 = 19 with a remainder of 1
19/3 = 6 with a remainder of 1

So, 17510 is 
the same 
as 201113

6/3 = 2 with a remainder of 0
2/3 = 0 with a remainder of 2
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Brief Interlude:  Human Stupidity
Bad Economic Times
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UCF Weekly Bike Fail

Courtesy of
Christian Gati

Note:  This is the BEST EVER
UCF BIKE FAIL!!!!!!!

Several “views” will be shown.

(Warning:  Recommended for mature students only.
May cause severe brain damage.)
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UCF Weekly Bike Fail

Courtesy of
Christian Gati Note, this was outside HPA.
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Base Conversion Methods

 Generic Conversion Process
 Convert from ANY base (call it B1)
 To ANY to other base (call it B2)

 where NEITHER of the bases are base 10

 This is a two step process:
1) Convert from B1 to base 10
2) Convert from base 10 to B2

 How to do this should be straightforward:
 You simply utilize both of the methods already shown
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Base Conversion Methods

 Generic Conversion Process
 Convert 1257 to base 4
 This is a two step process:
1) Convert 1257 to base 10

 Solution:
 1257 = 1x72 + 2x71 + 5x70 = 6810

 Refer to slide 17 for a reminder of how to do this step if 
there is confusion
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Base Conversion Methods

 Generic Conversion Process
 Convert 1257 to base 4
 This is a two step process:
2) Now, convert 6810 to base 4

 Solution:
68/4 = 17 with a remainder of 0
17/4 = 4 with a remainder of 1
4/4 = 1 with a remainder of 0

So, 1257 is 
the same 
as 6810, 

which is the 
same as 

10104
1/4 = 0 with a remainder of 1

Final Answer:
1257 converts 
to 10104
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Base Conversion Methods

 Generic Conversion Process
 If you are converting between two bases (B1 & B2) 

that are BOTH a perfect power of 2
 You can use the method we just showed.
 But the following process works more quickly:
1) Convert from B1 to base 2
2) Convert from base 2 to B2

 Part 1 should be straightforward:
 We just need to briefly look at Part 2
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Base Conversion Methods

 Generic Conversion Process
 Convert A3D16 to base 8 (octal)

 Notice they are both perfect powers of 2

 This is a two step process:
1) Convert A3D16 to base 2

 Solution:
 For this part, we just put the binary equivalent of each digit
 A3D16 = 1010 0011 11012
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Base Conversion Methods

 Generic Conversion Process
 Convert A3D16 to base 8 (octal)

 Notice they are both perfect powers of 2

 This is a two step process:
2) Now, convert 1010 0011 11012 to base 8

 Solution:
 Think:

 How many possible counting digits are there in base 8?
 DUH!
 There are 8!  Hence base 8!  They are 0 through 7.
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Base Conversion Methods

 Generic Conversion Process
 Convert A3D16 to base 8 (octal)

 Notice they are both perfect powers of 2

 This is a two step process:
2) Now, convert 1010 0011 11012 to base 8

 Solution:
 Think:

 Now, how many binary digits does it take to perfectly represent 
one octal (base 8) digit?

 Three!
 Why?  Cuz 8 = 23
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Base Conversion Methods

 Generic Conversion Process
 Convert A3D16 to base 8 (octal)

 Notice they are both perfect powers of 2

 This is a two step process:
2) Now, convert 1010 0011 11012 to base 8

 Solution:
 So group the binary digits, in SETS OF THREE

 From right to left
 Then convert each set of three binary digits to its octal 

equivalent
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Base Conversion Methods

 Generic Conversion Process
 Convert A3D16 to base 8 (octal)

 Notice they are both perfect powers of 2

 This is a two step process:
2) Now, convert 1010 0011 11012 to base 8

 Solution:
 1010 0011 11012

 Just rewrite this with different spacing:  101 000 111 1012

 Convert each set of three digits:
 50758

Final Answer:
A3D16 converts 

to 50758
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Base Conversions

We’re done!
WASN’T THAT
STUPENDOUS!
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Daily Demotivator
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