More Recursion:
Permutations

Permutations

The Permutation problem:

Given a list of items,
List ALL the possible orderings of those items
Often, we work with permutations of letters

For example:
Here are all the permutations of the letters CAT:
— CAT ATC
CTA TAC
ACT TCA

The question: can we write a program to do this?

More Recursion: Permutations page 2

Permutations

The Permutation algorithm:

There are several different permutation
algorithms

Since recursion is an emphasis of the course,
we will present a recursive algorithm to solve this

Permutations of the letters CAT:

CAT AIC
CTA TAC
ACT TCA

More Recursion: Permutations page 3

Permutations

The Permutation algorithm:

The idea is as follows:
We want to list ALL the permutations of CAT
So we split our work into 3 groups of permutations:

Permutations that start with C
Permutations that start with A
Permutations that start with T

More Recursion: Permutations page 4

Permutations

The Permutation algorithm:

The idea is as follows:
Notice what happens:

What can we say about ALL of the permutations that
start with the letter C?

Think about recursion...

Think about the idea of wanting to reduce your problem to a
smaller problem of the same form...

— ALL of the permutations that start with the letter C,

Are SIMPLY three-character strings that are formed by
attaching C to the front of ALL permutations of “AT”

So this is nothing but another, smaller permutation
problem!!!

More Recursion: Permutations page 5

Permutations — Recursive Calls

The Permutation algorithm:
The # of recursive calls needed:

General “rule of thumb” for recursion:

“recursive functions don’t have loops”
cuz we use recursion!
Either you have iteration, hence loops
Or recursion...no need for loops
However, this rule of thumb is just that
It's not always true
One exception is this permutation algorithm

More Recursion: Permutations page 6

Permutations — Recursive Calls

The Permutation algorithm:
The # of recursive calls needed:

Look at the example with three letters, CAT
We need THREE recursive calls, one for each letter
Remember, we said we split the work into three groups:
Permutations that start with C
Permutations that start with A
Permutations that start with T
But what if we were permuting the letters of the
word “computer”
EIGHT recursive calls would be needed
1 for each possible starting letter

More Recursion: Permutations page 7

S

Permutations — Recursive Calls

The Permutation algorithm:
The # of recursive calls needed.:
So we see the need for a loop in our algorithm:

for (each possible starting letter) {
list all permutations that start

with that letter

Now, what is the terminating condition?

More Recursion: Permutations page 8

Permutations — Recursive Calls

The Permutation algorithm:
The # of recursive calls needed:

Terminating condition:
Permuting either O or 1 element
Right.?.

Cause if there is only 1 element or O elements, then there is
nothing to permute!

In our code, we will use 0 as the terminating condition
When there are 0 elements left
This can only be done in one way

More Recursion: Permutations page 9

Permutations — Extra Parameter

The Permutation algorithm:

Use of an extra parameter:

As seen previously, some recursive functions take in an
extra parameter
When compared to their iterative counterparts

This Is the case for our permutation algorithm
In order for the recursive permutation to work correctly
We must specify one additional piece of information

And now to our function...

But first...

More Recursion: Permutations page 10

Brief Interlude: Human Stupidity

S

Permutations — Recursive Function

The Permutation algorithm:

Function Prototype

With Pre-conditions and Post-conditions:

// Pre-condition: str is a valid C String, and

// k 1s non-negative and less than
// or equal to the length of str.

// Post-condition: All of the permutations of str
// with the first k characters fixed

// in their original positions are

// printed. Namely, 1f n i1s the
E— // length of str, then (nh-k)!

// permutations are printed.

void RecursivePermute(char str[], int k);

So k refers to the first k characters that are fixed in their
original positions

More Recursion: Permutations page 12

Permutations — Recursive Function

The Permutation algorithm:

Terminating condition:

Terminate when Kk is equal to the length of the string, str
Think about that:
k refers to the first k characters in the string that are fixed
So if k is equal to the length of the actual string
This means that ALL of the letters in str are fixed!
If/when this becomes the case
SE— We simply want to print out that permutation

If we do NOT terminate:
We want a for loop that tries each character at index k

More Recursion: Permutations page 13

S

Permutations — Recursive Function

The Permutation algorithm:
The main for loop within the recursive algorithm:

for (J=k; j<strlen(str); j++) {
ExchangeCharacters(str, k, j);

RecursivePermute(str, k+1);
ExchangeCharacters(str, j, k);

ExchangeCharacters function:
Remember the three letter example, CAT

We said that we need to find ALL permutations with C
as the first character, A as the first, and with T as the

first

More Recursion: Permutations page 14

S

Permutations — Recursive Function

The Permutation algorithm:
The main for loop within the recursive algorithm:

for (J=k; j<strlen(str); j++) {
ExchangeCharacters(str, k, j);
RecursivePermute(str, k+1);

ExchangeCharacters(str, j, k);

ExchangeCharacters function:

This function SWAPS the two characters at the indices
passed in as the last two arguments to the function

We then recursively call the permute function
Then we SWAP the characters back to their spots

More Recursion: Permutations page 15

Permutations — Recursive Function

void RecursivePermute(char str[], int k) {
int j;

// Base-case: All fixed, so print str.
iIT (k == strilen(str))

printf('%s\n", str);
else {

// Try each letter in spot j.

for (J=k; j<strlen(str); j++) {
// Place next letter iIn spot K.
ExchangeCharacters(str, k, j);

// Print all with spot k fixed.
RecursivePermute(str, k+1);

// Put the old char back.
ExchangeCharacters(str, j, k);

Let's look at this in more detail.

More Recursion: Permutations page 16

S

Permutations — Recursive Function

The Permutation algorithm:

Code Iin detalil:
We send over two parameters to the function:
The actual string we want to permute

And the integer k
Represents the first k characters that are FIXED at their spots

void RecursivePermute(char str[], int k) {
int j;

// Base-case: All fixed, so print str.

iIT (k == strlen(str))
printf('%s\n"", str);

More Recursion: Permutations page 17

S

Permutations — Recursive Function

The Permutation algorithm:

Code Iin detalil:
Using CAT as our example string:
We send over the string, CAT

And the integer k (currently set to zero)
Representing that ZERO characters are initially FIXED.

void RecursivePermute(char str[], int k) {
int j;

// Base-case: All fixed, so print str.

iIT (k == strlen(str))
printf('%s\n"", str);

More Recursion: Permutations page 18

S

Permutations — Recursive Function

The Permutation algorithm:

Code In detall:

Base case:
If k is equal to the length of our string
Meaning that ALL characters are fixed
Then there is no more characters to permute

Just print out the resulting string!

void RecursivePermute(char str[], int k) {
int j;

// Base-case: All fixed, so print str.

iIT (k == strlen(str))
printf("'%s\n"", str);

More Recursion: Permutations page 19

S

Permutations — Recursive Function

The Permutation algorithm:

Code In detall:

ALL other cases (non-base cases):.
If k does NOT equal the length of the string
Means there are some characters that have not been FIXED
Means that there are more options to permute

void RecursivePermute(char str[], int k) {
// PREVIOUS CODE
else {
// Try each letter in spot j.

for (J=k; j<strlen(str); j++) {
//
// ... code here
//

More Recursion: Permutations page 20

S

Permutations — Recursive Function

The Permutation algorithm:

Code In detall:

ALL other cases (non-base cases):.
So we call this for loop

It iterates the number of times EQUAL to the number of
possible characters that can go into index k

for (J=k; j<strlen(str); j++) {
// Place next letter iIn spot K.
ExchangeCharacters(str, k, j);
// Print all with spot k fixed.

RecursivePermute(str, k+1);
// Put the old char back.
ExchangeCharacters(str, j, k);

More Recursion: Permutations page 21

S

Permutations — Recursive Function

The Permutation algorithm:

Code In detall:

ALL other cases (non-base cases):.
Again, k refers to the number of FIXED positions
For example, if k is 2
Meaning, index 0 and index 1 are FIXED
Then the first NON-FIXED location is index 2 ...the value of k!
for (J=k; j<strlen(str); j++) {
// Place next letter 1In spot k.

ExchangeCharacters(str, k, j);
// Print all with spot k fixed.

RecursivePermute(str, k+1);
// Put the old char back.
ExchangeCharacters(str, j, k);

More Recursion: Permutations page 22

S

Permutations — Recursive Function

The Permutation algorithm:

Code In detall:

For all possible characters that could be placed at index
K (the next possible NON-FIXED spot):
ExchangeCharacters(str, k, j)
Means SWAP the characters at index k and |
Meaning, try all possible values at index k

for (J=k; j<strlen(str); j++) {
// Place next letter iIn spot K.
ExchangeCharacters(str, k, j);
// Print all with spot k fixed.

RecursivePermute(str, k+1);
// Put the old char back.
ExchangeCharacters(str, j, k);

More Recursion: Permutations page 23

S

Permutations — Recursive Function

The Permutation algorithm:

Code In detall:

For all possible characters at index k:
So if we had just started this function
Input was CAT for the string and k equal to zero
this for loop would run three times (length of CAT)
Each time, the first line would try each character at index O

for (J=k; j<strlen(str); j++) {
// Place next letter iIn spot K.
ExchangeCharacters(str, k, j);
// Print all with spot k fixed.

RecursivePermute(str, k+1);
// Put the old char back.
ExchangeCharacters(str, j, k);

More Recursion: Permutations page 24

S

Permutations — Recursive Function

The Permutation algorithm:

Code In detall:

For all possible characters at index k:

This is what we said earlier, split the work into 3 parts:
Permutations that start with C
Permutations that start with A
Permutations that start with T

for (J=k; j<strlen(str); j++) {
// Place next letter iIn spot K.
ExchangeCharacters(str, k, j);
// Print all with spot k fixed.

RecursivePermute(str, k+1);
// Put the old char back.
ExchangeCharacters(str, j, k);

More Recursion: Permutations page 25

S

Permutations — Recursive Function

The Permutation algorithm:

Code In detall:

So the for loop iterates three times (for CAT)
First line of code makes each letter the first spot of the string
The second line then recursively calls the function
The arguments are the string (updated with a new, 1st character)
And the new value for k (referring to the # of FIXED spots)
for (J=k; j<strlen(str); j++) {
// Place next letter 1In spot k.

ExchangeCharacters(str, k, j);
// Print all with spot k fixed.

RecursivePermute(str, k+1);
// Put the old char back.
ExchangeCharacters(str, j, k);

More Recursion: Permutations page 26

S

Permutations — Recursive Function

The Permutation algorithm:

Code In detall:

So the for loop iterates three times (for CAT)
Third and final line of code

Simply switches back the characters that we swapped with the
first line of code (of the for loop)

for (J=k; j<strlen(str); j++) {
// Place next letter iIn spot K.
ExchangeCharacters(str, k, j);
// Print all with spot k fixed.

RecursivePermute(str, k+1);
// Put the old char back.
ExchangeCharacters(str, j, k);

More Recursion: Permutations page 27

Recursion

WASN'T
THAT

BODACIOUS!

Daily Demotivator

THE EARLY WORM 15 FOR THE BIRDS.

More Recursion: Permutations

page 29

More Recursion:
Permutations

	More Recursion:�Permutations
	Permutations
	Permutations
	Permutations
	Permutations
	Permutations – Recursive Calls
	Permutations – Recursive Calls
	Permutations – Recursive Calls
	Permutations – Recursive Calls
	Permutations – Extra Parameter
	Brief Interlude: Human Stupidity
	Permutations – Recursive Function
	Permutations – Recursive Function
	Permutations – Recursive Function
	Permutations – Recursive Function
	Permutations – Recursive Function
	Permutations – Recursive Function
	Permutations – Recursive Function
	Permutations – Recursive Function
	Permutations – Recursive Function
	Permutations – Recursive Function
	Permutations – Recursive Function
	Permutations – Recursive Function
	Permutations – Recursive Function
	Permutations – Recursive Function
	Permutations – Recursive Function
	Permutations – Recursive Function
	Recursion
	Daily Demotivator
	More Recursion:�Permutations

