
COP 3502 – Program #4 – Spring 2004

COP 3502 – Spring 2004 – Programming Assignment #4

Due Date: Tuesday March 30, 2004 by 11:55pm

Points: 45 points

Objective: The primary focus of this lab is to give you practice implementing and

maintaining linked lists. All linked list implementations are to be dynamic.

Application: A list can be used to represent a polynomial. In general, a nth order polynomial

in x, for non-negative integers n, has the form:

 ∑
=

+⋅⋅⋅+++=
n

0i

n
n

3
3

2
210

i
i xaxaxaxaaxa

 where: an ≠0 and ai is the coefficient of the ith power of x.

 For simplicity, we will assume that the coefficients are integer values. An

alternative representation of such polynomials consists of a sequence of ordered
pairs:

 {(a0, 0), (a1,1), (a2, 2), …, (an, n)}

Each ordered pair (ai, i) corresponds to the term ai xi of the polynomial. For
example, the polynomial 31 + 41x + 59x2 would be represented by the sequence
{(31, 0), (41, 1), (59, 2)}. The advantage of such a representation is that zero
coefficient terms are not included in the sequence. This representation can
result in major space savings when representing a 100th-order polynomial such
as x100 + 1 which includes only two terms in this representation: {(1, 100), (1, 0)}.

You will build singly-linked list structures that will represent polynomials using this
representation technique. The input for each polynomial will consist of a
sequence of ordered pairs (coefficient, exponent). You will have no more than
15 polynomials in total. One way of representing the polynomials is shown
below. Each polynomial is uniquely identified by its position within an indexing
structure (a simple array will work fine for this). This storage scenario is
illustrated below:

1

2

3

4

5

(59,2) (41,1)

(12,1)

(1,100) (1,0)

(61,4) (-9,2) (27,0)

(5,5) (5,2)

(31,0)

(15,0)

COP 3502 – Program #4 – Spring 2004

When constructing a polynomial, the user may input the coefficient,exponent
pairs in random order, however, the polynomial should be stored in decreasing
order of exponent. The indexing structure is filled sequentially.

For the purposes of this application, we will assume that the “data” portion of the
list node contains two integer values, the coefficient and the exponent. You can
augment the Node class that we developed in lecture.

Operations: You will develop several different functions that operate on the polynomials.

Each of these is explained below:

 build: This function will construct a new polynomial. It will require the user to

input the pairs which correspond to the coefficient and exponent pairs that
comprise the polynomial. This new polynomial is simply appended to your list of
polynomials. (Hint: This function should most likely return a pointer to the first
node in the list storing the newly created polynomial.)

 print (p): This function will produce a nice looking mathematical format for the

polynomial p printed with the largest exponent term first (leftmost printed term)
down through the constant term. (Don’t worry about printing exponents in
smaller print and proper position – use form shown below.) NOTE: this function
does not alter the list representing the polynomial it simply prints it out in the
proper order (as the polynomial is already stored).

 example: print called on the fourth polynomial listed on the previous page will

print: 61x^4 − 9x^2 + 27

 differentiate (p): This function will produce the derivative of the polynomial with

respect to x. The derivative is obtained by differentiating each term in the
polynomial with respect to x. The derivative that you produce will be stored in a
new polynomial (one of the 15 you have available).

 Given the polynomial: {(an, n), ..., (a2, 2), (a1,1), (a0, 0)}
 The derivative with respect to x is: {(nan, n-1), ..., (2a2, 1), (a1,0)}
 (Note: If you need further clarification on the process of taking a derivative of a

polynomial, please see your TA.)

 example: differentiate called on the first polynomial listed on the previous page

will produce the list {(118, 1), (41, 0)}.

 (Hint: Your function should taken in a pointer to the first node in a polynomial,

create a new linked list structure that stores the corresponding derivative, and
then returns a pointer to the first node in this newly created derivative.)

 end: When the user has finished they will indicate this (see Input below) and the

system should print each polynomial currently in the system.

COP 3502 – Program #4 – Spring 2004

Input: The input to your program will be menu driven, based on the functions shown
above. Your menu screen could look like the one shown below or something along
these lines.

The build function will request the user enter a set of ordered pairs representing the
polynomial. The print and differentiate functions will request the user enter an
integer number (between 1 and 15) indicating which polynomial is to be printed or
differentiated. Notice that differentiate creates a new polynomial and will need to
know the proper location in the list to insert the new polynomial.

Input Specifications and Error Checking: Assume that the user will choose proper menu

choices and will enter all polynomials perfectly. Thus assume that the user properly
enters the number of terms they are entering(a positive integer), and does NOT
enter two terms with the same exponent. Furthermore, each exponent entered will
be a non-negative integer and each coefficient entered will be a non-zero integer.
However, a user may attempt to print or differentiate a polynomial that does not
exist. In this case, simply print out an error message that states the polynomial
doesn't exist and print out the main menu.

Output: Only the print and end functions actually produce output. You may, if you wish, have

the build and differentiate functions print a message that they have completed their
task.

Output Specification: Follow the example provided below as closely as possible. In

particular, when printing out a polynomial, only print out leading minus signs.
Preceding all other positive terms, print a plus sign. For all negative terms, do NOT
precede them with a plus sign. Also, if the coefficient of a term is 1, do not print out
a one preceding the term. Thus, the polynomial {(2,3), (-1, 1)} should be printed as
2x^3 -x and not 2x^3 + -x or 2x^3 -1x.) Notice that there is one space
between each term and the following term or plus sign and one space in between a
plus sign and the its following term.

Restrictions: Name the file you create and turn in poly.c. Although you may use other

compilers, your program must compile and run using gcc or cygwin. Your program
should include a header comment with the following information: your name, course
number, section number, assignment title, and date. You should also include
comments throughout your code, when appropriate.

Deliverables: A single source file named poly.c turned in through WebCT.

Welcome to the CS1 Polynomial Representation
System

-Select your option-

1. Create a new polynomial.
2. Print an existing polynomial.
3. Differentiate an existing polynomial.
4. End session.

ENTER YOUR SELECTION:

COP 3502 – Program #4 – Spring 2004

Sample Output:

Welcome to the CS1 Polynomial Representation System
-Select your option-

1. Create a new polynomial.
2. Print an existing polynomial.
3. Differentiate an existing polynomial.
4. End session.

ENTER YOUR SELECTION: 1
How many terms are you entering?
3
Enter the coefficients and exponent pairs.
31 0
41 1
59 2
Polynomial #1 constructed

ENTER YOUR SELECTION: 1
How many terms are you entering?
3
Enter the coefficients and exponent pairs.
27 0
61 4
-9 2
Polynomial #2 constructed

ENTER YOUR SELECTION: 2
Which polynomial do you want to print? 7
Sorry, polynomial #7 does not exist.

ENTER YOUR SELECTION: 2
Which polynomial do you want to print? 2
Polynomial #2 is 61x^4 –9x^2 + 27

ENTER YOUR SELECTION: 3
Which polynomial do you want to differentiate? 2
Polynomial #2 successfully differentiated.
Stored as polynomial #3.

ENTER YOUR SELECTION: 2
Which polynomial do you want to print? 3
Polynomial #3 is 244x^3 –18x

ENTER YOUR SELECTION: 4
Polynomial #1 is 59x^2 + 41x + 31
Polynomial #2 is 61x^4 –9x^2 + 27
Polynomial #3 is 244x^3 –18x
GOOD BYE!

