
Computer Science 1 - Program 3 
Simulation 

Assigned: 2/18/04 
Due: 3/5/04 (Friday) at 11:55pm (WebCT time) 

 
Objective 
1.  To write a program implementing the sorting techniques covered in lecture. 
2.  To write a program implementing the stack data structure. 
3.  To write a producer/consumer simulation program. 
 
The Problem 
At the CS1 Corporation we have a machine that produces objects.  Each object has an 
identification number (an integer number) which corresponds to the order in which it was 
generated and a rating.  The rating has been determined by a quality control machine (the 
producer process) and is one of “E” for excellent, “G” for good, “M” for marginal, and 
“D” for defective.  We will assume that any of the ratings “E”, “G”, and “M” are equally 
likely to occur but that the “D” rating will occur only 10% of the time.  The quality 
control machine will generate objects at random times and place them onto a stack.  The 
quality assurance machine (the consumer process) removes objects from the stack at 
random times and does the following with each object retrieved from the stack.  If the 
rating of the object is either “E” or “G”, the object is placed into a list of quality assured 
products available for immediate sale.  If the rating of the object is “M” the object is 
placed into a list of objects to be checked by another department but are not to be sold.  If 
the rating of the object is “D”, then the object is simply ignored (we’ll assume it is 
returned for scrap and will be recycled and rebuilt). 
 
What we want to do in this program is simulate this function of our company.  To do the 
simulation, we’ll allow these processes to execute for some period of time and see what 
the effect is after this period of time.  A simulation cycle consists of either the production 
of one object, the consumption of one object, the production and consumption of one 
object, or neither the production nor consumption of any objects.  This will be controlled 
by the randomness of the producer and consumer processes.  For the purposes of this 
simulation we’ll assume that during any simulation cycle, there is a 70% chance that the 
producer process will produce an object and a 40% chance that the consumer process will 
consume an object. If both events occur in a simulation cycle, then assume that the 
production of the new item occurs BEFORE the consumption of an item (which will be 
the newly produced item.) 
 
In your implementation please adhere to the following guidelines: 
 

1. Set the stack size to contain a maximum of 20 objects. 
2. Have the user input (from the keyboard) the number of events that will occur 

during the simulation.  For our purposes here an event is either the production or 
consumption of an object.  Note that this does not imply that 500 objects will be 



produced and 500 will consumed since both the producer and consumer processes 
are randomly active during a simulation cycle. 

3. The producer process (the quality control machine) cannot produce an object if the 
stack is full. In order to implement this idea, before a simulation cycle begins, 
check to see if the stack is full. If it is, then automatically skip the production part 
of the cycle. 

4. The consumer process (the quality assurance machine) cannot consume an object 
if the stack is empty. In order to implement this idea, right before the consumer 
part of the simulation cycle, check to see if the stack is empty. If it is, then 
automatically skip the consumer part of the cycle. 

5. Your sorting must be done by either a Merge Sort or a Quick Sort. You can pick 
either to implement. 

 
 
References 
Textbook: Chapter 8. Lecture notes. 
 
 
Input Format 
The only value that the user will enter will be the number of simulation cycles to run.  
Test with small values between 10 and 20, but assume that very large values could be 
entered by the user.  However, for setting arrays limits and such, assume that no array 
will need to hold more than 1000 objects.  
 
 
Output Specification 
When the simulation ends, we want to see the following displayed: 

1. A listing of the objects in the quality assured list sorted in ascending order by their 
identification number. 

2. A listing of the objects in the to be checked list sorted in ascending order by their 
identification number. 

3. A count of the total number of objects rated “E”. 
4. A count of the total number of objects rated “G”. 
5. A count of the total number of objects rated “M”. 
6. A count of all of the object that were ignored as being defective. 
7. A count of the number of times the stack was full at the beginning of a simulation 

cycle. 
8. A count of the number of times the stack was empty right before the consumer part 

of the simulation cycle begins. 
9. A listing of all the objects left in the stack when the simulation ended.  These 

objects should be printed so that the item that was in the stack the least amount of 
time should be printed last. 

 
 
 
 



 
Output Sample 
Here is a sample output from running the program when the number of simulation cycles 
is entered as 17 and the size of the stack is assumed to be 4.  Note that this is NOT a 
comprehensive test. You should test your program with different data than is shown here 
based on the specifications given. The user input is given in italics while the program 
output is in bold.  
 
Assume the simulation cycles for the sample execution were as follows: 

1. Consume object – blocked stack is empty 
2. Produce object 1:M 
3. Produce object 2:E 
4. Consume object 2:E 
5. Produce object 3:G    and   Consume object 3:G 
6. Produce object 4:D 
7. Produce object 5:M 
8. Consume object 5:M 
9. Produce object 6:E 
10. Produce object 7:M 
11. Produce object  - blocked stack is full 
12. Consume object 7:M 
13. Produce object 8:G 
14. Consume object 8:G 
15. Produce object 9:E 
16. Produce object – blocked stack is full and Consume object 9:E 
17. Consume object 6:E 

 
How many simulation cycles would you like to run? 
17 
 
Quality Assurance list contains: 
   2:E, 3:G, 6:E, 8:G, 9:E 
 
To be Checked list contains: 
   5:M, 7:M 
 
Total of 3 “E” type objects were produced 
Total of 2 “G” type objects were produced 
Total of 3 “M” type objects were produced 
Total of 1 “D” type objects were produced 
 
Stack was full 3 times at beginning of simulation cycle 
Stack was empty 1 time when consumer process attempted to consume object 
 
Objects remaining in stack at end of simulation were: 
    1:M, 4:D 



Grading Details 
Due to the nature of this program, a larger portion of your grade than usual will come 
from your implementation of the simulation. (If you do a little math, it's pretty easy to 
"fake" much of the output of this assignment.) Thus, a greater weighting than in the 
previous two assignments will be given for adhering to the implementation specifications. 
 
Your program will be graded upon the following criteria: 
 

1. Adhering to the implementation specifications listed above. 
2. Your algorithmic design implementing the producer/consumer processes and the 

constraints on their activities as described above. 
3. Correctness. 
4. The frequency and utility of the comments in the code, as well as the use of white 

space for easy readability. (We're not kidding here. If your code is poorly 
commented and spaced and works perfectly, you could earn as low as 80-85% on 
it.) 

5. Compatibility to either cygwin in Windows or gcc under olympus. (If your 
program does not compile in either of these environments, you will get a sizable 
deduction from your grade.) 

 
 
Restrictions  
Name the file you create and turn in simulation.c. Although you may use other compilers, 
your program must compile and run using gcc or cygwin. Your program should include a 
header comment with the following information: your name, course number, section 
number, assignment title, and date. You should also include comments throughout your 
code, when appropriate. 
 
Deliverables 
A single source file named simulation.c turned in through WebCT by the due date and 
time. 
 
 


