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• As we have discussed within the context of the binary 
search tree, the performance of the algorithms which utilize 
the BST are dependent upon the height of the tree.

• We have looked at the DSW algorithm which takes an 
existing un-balanced BST and converts it into a perfectly 
balanced BST.

• In this set of notes we will look at a binary search tree 
which is self-balancing.  In other words, each insertion and 
deletion operation will re-balance the tree.  In this fashion, 
the tree is never un-balanced.  

• There are many different types of self-balancing search 
trees.  We’ll examine just one of these in this course.

Self-balancing Binary Search Trees
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• AVL trees were originally called admissible trees, but were 
subsequently renamed after their discovery in 1962 by the Russian 
mathematicians Georgii M. Adel'son-Vel'skii and Evgenii M. Landis.

• An AVL tree is a binary search tree with a balance property (a structure 
property).  The balance condition ensures that the height of the tree is 
O(log n) (its actually 1.44log n) where n is the number of nodes in the 
tree.

• All insertions, deletions, and searches in an AVL tree can be achieved 
in O(log n) time.

• In a completely balanced tree, the left and right subtrees of any node 
would have the same height. Since this can only occur for trees which 
are full, this definition is too restrictive for general search trees.  The 
AVL tree relaxes this restriction to allow the heights of any two 
subtrees to differ by no more than 1.

AVL Trees
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AVL Trees (cont.)
DEFINITION:

An AVL tree is a binary search tree in which the height of the left and right subtrees 
of the root differ by at most 1 and in which the left and right subtrees are also AVL 
trees.

With each node of an AVL tree is associated a balance factor that is determined by 
subtracting the height of the right subtree minus the height of the left subtree.  For 
each node in an AVL tree the value of the balance factor is either –1, 0, or 1.  The 
height of an empty subtree is assumed to be 0.
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Non-AVL Trees 
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• Notice that the definition of an AVL tree does not require that all the 
leaf nodes be on the same or adjacent levels as was the case for a 
perfectly balanced binary search tree.

• It is possible to construct AVL trees which are quite skewed.  Shown 
below are some examples.

Skewed AVL Trees
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Some skewed AVL trees



COP 3502: Computer Science I  (Note Set #22)              Page 7 © Mark Llewellyn

• The insertion of a new node into an AVL tree begins in the same fashion as 
insertion into a standard BST.  Basically a search for the new value occurs 
which will be guaranteed to end on a null pointer in a leaf node with the 
actual insertion taking place in either the left or right subtree of that leaf 
node depending on its value compared to that in the leaf node.  Once this is 
done, the balance must be checked and restored if the tree has become 
unbalanced.

• It often turns out that the new node can be inserted without changing the 
height of the subtree.  If this occurs, then the balance of the root will not 
change.

• Even when the height of the subtree has increased, it may be that it was the 
shorter subtree that increased in height, so only the balance factor of the 
root will change.

• The only case that can cause difficulty occurs when the new node is added 
to a subtree of the root which is taller than the other subtree and the height 
of the taller subtree increases.  This would cause the one subtree to have a 
height 2 more than the other, violating the AVL structure property.

Insertion Into An AVL Tree
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• Thus, an AVL tree can become unbalanced due to an insertion 
in one of four ways (two of which are symmetric to the 
others).

1. Inserting a new node into the right subtree of a right child.

a. Symmetric case is insertion of new node into the left subtree of a left child.

2. Inserting a new node into the left subtree of a right child.

a. Symmetric case is insertion of a new node into the right subtree of a left 
child.

• The first case is the simpler of the two to handle, so we’ll 
examine this case first.

Insertion Into An AVL Tree (cont.)
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Case 1: Insertion Into the Right Subtree of a Right Child

P (1)

Q (0)

hh

h

Initial AVL tree before insertion

h+1

P (2)

Q (1)

h+1

h

h

AVL tree after insertion into 
right subtree of right child Q

h+2
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• As the diagram on the previous slide clearly indicates, the 
AVL tree has become imbalanced due to the insertion of a 
new node into the right subtree of the right child of P.

• Note that the point of imbalance is at node P, the parent of the
right child into whose subtree the insertion occurred.

• The question now becomes, how do we rebalance the tree 
after this insertion?

• The answer is via a rotation of Q about P.  Notice that this will 
be a left rotation, effectively bring the subtree rooted at Q, up 
and to the left in the tree and pushing P down and to the left. 
This is illustrated in the next slide.

Handling the Imbalance for Case 1
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Single Left Rotation Handles Case 1 Imbalance

P (2)

Q (1)

h+1

h

h

Result of a case 1 imbalance 
in an AVL tree after insertion 
into right subtree of right child 
Q

h+2
h+1

hh

AVL tree after single left rotation 
of Q about P.  Balance has been 
restored in the tree.

P (0)

Q (0)
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Example – Case 1 Insertion Imbalance

Initial AVL tree

20 (1)

12 (–1) 30 (1)

8 (0) 25 (0) 50 (0)

40 (0) 60 (0)

P

Q
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Example – Case 1 Insertion Imbalance (cont.)

AVL tree after insertion of new node containing 55.  Note the change in balance factors from the  
initial tree.  Balance factors that have changed are shown in bold.  Notice that they have 
changed all the way to the root of the tree.

20 (2)

12 (–1) 30 (2)

8 (0) 25 (0) 50 (1)

40 (0) 60 (–1)

P

Q

55 (0)
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Example – Case 1 Insertion Imbalance (cont.)

AVL tree after left rotation of 50 about 30 (Q about P).  Note that the root of the tree is now 
balanced.  

20 (1)

12 (–1) 50 (0)

8 (0) 30 (0) 60 (–1)P

Q

55 (0)40 (0)25 (0)



COP 3502: Computer Science I  (Note Set #22)              Page 15 © Mark Llewellyn

Symmetric Case 1a: Insertion Into the Left Subtree of a 
Left Child

P (–1)

Q (0)

h h

h

Initial AVL tree before insertion

h+1

P (–2)

Q (–1)

h+1

h

h

AVL tree after insertion into 
left subtree of left child Q

h+2
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• As the diagram on the previous slide clearly indicates, the 
AVL tree has become imbalanced due to the insertion of a 
new node into the left subtree of the left child of P.

• Note that the point of imbalance is at node P, the parent of the
left child into whose subtree the insertion occurred.

• As with case 1, the imbalance is removed via a rotation of Q 
about P.  In this case, however, the rotation will be a right 
rotation, effectively bringing the subtree rooted at Q up and to
the right in the tree pushing P down and to the right.  This is 
illustrated in the next slide.

Handling the Imbalance for Symmetric Case 1a
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Single Right Rotation Handles Case 1a Imbalance

P (–2)

Q (–1)

h+1

h

h

Result of a case 1a imbalance in 
an AVL tree caused by the 
insertion of a new node into the 
left subtree of the left child of P

h+2

AVL tree after a single right 
rotation of Q about P.  Balance 
has been restored to the tree.

P (0)

Q (0)

h+1
h h
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Example – Case 1a Insertion Imbalance

50 (–1)

60 (1)40 (–1)

70 (0)45 (0)30 (0)

35 (0)20 (0)

P

Q

Initial AVL Tree
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Example – Case 1a Insertion Imbalance

AVL tree after insertion of node with value 25.  Insertion in the left subtree of the left child P.  
Balance factors that have changed from the initial tree are shown in bold.

50 (–2)

60 (1)40 (–2)

70 (0)45 (0)30 (–1)

35 (0)20 (1)

P

Q

25 (0)
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Example – Case 1a Insertion Imbalance

AVL tree after a single right rotation of 30 about 40.  Note that 
this balances the tree all the way to the root.

50 (–1)

60 (1)30 (0)

70 (0)40 (0)20 (1)

35 (0)

P

Q

25 (0) 45 (0)
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Case 2: Insertion Into the Left Subtree of a Right Child

P (1)

Q (0)

hh

h

Initial AVL tree before insertion

h+1

P (2)

Q (?1)

h+1

h

h

AVL tree after insertion into 
left subtree of right child Q

h+2
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A Closer Look At What Happens To The Tree In Case 2

P (2)

Q (?1)

h+1

h

h

AVL tree after insertion into 
left subtree of right child Q

h+2

P (2)

Q (?1)

h

h

Assuming insertion was in 
the right subtree of the left 
child of Q (call this node R)

R (1)

h
h?1
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• As the diagram on the previous slide clearly indicates, the 
AVL tree has become imbalanced due to the insertion of a 
new node into the left subtree of the right child of P.

• As can be seen on the next slide, a single rotation does not 
correct the imbalance of the tree rooted at P (it actually 
induces a further imbalance in the tree rooted at R after the 
first rotation occurs).

• The solution to the problem is a second rotation.  For case 2, 
(insertion was in the left subtree of a right child) the first 
rotation is a right rotation of R about Q and the second 
rotation is a left rotation of R about P.  For the symmetric case 
2a (insertion is in the right subtree of a left child), we’ll see 
shortly that the first rotation will be a right rotation and the
second will be a left rotation.

Handling the Imbalance for Case 2



COP 3502: Computer Science I  (Note Set #22)              Page 24 © Mark Llewellyn

Double Rotation Handles Case 2 Imbalance

P (2)

Q (?1)

h

h

Resulting imbalance in 
case 2 insertion

R (1)

h
h?1

After right rotation of R 
about Q

P (2)

Q (0)

h

h

R (2)

h

h?1

After left rotation of R 
about P.  The complete 
set of rotations has been 
a right followed by a left or 
a RL double rotation.

P (–1) Q (0)

h
h

R (0)

h
h?1



COP 3502: Computer Science I  (Note Set #22)              Page 25 © Mark Llewellyn

Example – Case 2 Insertion Imbalance

40 (–1)

60 (–1)20 (1)

50 (0)30 (0)15 (0)

25 (0) 35 (0)

P

Q

Initial AVL Tree
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Example – Case 2 Insertion Imbalance

AVL tree after insertion of node with value 28.  Balance factors that have 
changed from the initial tree are shown in bold.

40 (–2)

60 (–1)20 (2)

50 (0)30 (–1)15 (0)

25 (1) 35 (0)

P

Q

28 (0)

R
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Example – Case 2 Insertion Imbalance

AVL tree after right rotation of R about Q (25 about 30).  Note that the tree is 
not balanced after this first rotation.

40 (–2)

60 (–1)20 (2)

50 (0)

30 (0)

15 (0) 25 (2)

35 (0)

P

Q

28 (0)

R
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Example – Case 2 Insertion Imbalance

AVL tree after a second rotation, this one a left rotation of R about P (25 
about 20).  Note that the tree is now balanced.

40 (–1)

60 (–1)

20 (–1) 50 (0)30 (0)

25 (0)

35 (0)

P Q

28 (0)

R

15 (0)
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Symmetric Case 2a: Insertion Into the Right Subtree of 
a Left Child

P (?1)

Q (0)

h h

h

Initial AVL tree before insertion

h+1

P (?2)

Q (1)

h+1

h

h

AVL tree after insertion into 
right subtree of left child Q

h+2
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A Closer Look At What Happens To The Tree In 
Symmetric Case 2a

P (?2)

Q (1)

h+1

h

h

AVL tree after insertion into 
right subtree of left child Q

h+2

P (?2)

Q (1)

h

h

Assuming insertion was in 
the left subtree of the right 
child of Q (call this node R)

R (?1)

h
h?1
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• As the diagram on the previous slide clearly indicates, the 
AVL tree has become imbalanced due to the insertion of a 
new node into the right subtree of the left child of P.

• As was the case for the symmetric case 2, a double rotation is 
required to remove the imbalance in the tree.  In this case, the
first rotation will be a left rotation of R about Q followed by a 
right rotation of R about P.

• This is illustrated in the next slide, followed by an example.

Handling the Imbalance for Symmetric Case 2a
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Double Rotation Handles Symmetric Case 2a Imbalance

P (?2)

Q (1)

h

h

Symmetric case 2a 
insertion imbalance.

R (?1)

h
h?1

P (–2)

Q (0)

h

h

R (–2)

h

h?1

After left  rotation of R 
about Q.  Note tree is still 
imbalanced, now both at 
R and P.

P (1)Q (0)

h
h

R (0)

h
h?1

After right rotation of Q 
about R. Note tree is now 
balanced.
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Example – Symmetric Case 2a Insertion Imbalance

40 (–1)

60 (–1)20 (–1)

50 (0)25 (0)15 (0)

P

Q

Initial AVL Tree

10 (0) 18 (0)
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Example – Symmetric Case 2a Insertion Imbalance

AVL tree after insertion of node with value 16.  Balance factors that have 
changed are shown in bold.

40 (–2)

60 (–1)20 (–2)

50 (0)25 (0)15 (1)

P

Q

10 (0) 18 (–1)

16 (0)

R



COP 3502: Computer Science I  (Note Set #22)              Page 35 © Mark Llewellyn

Example – Symmetric Case 2a Insertion Imbalance

AVL tree after left rotation of 18 about 15 (R about Q).  Notice that the 
balance factors clearly indicate the tree is not balanced.

40 (–2)

60 (–1)20 (–2)

50 (0)25 (0)

15 (0)

P

Q

16 (0)10 (0)

18 (–2)R
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Example – Symmetric Case 2a Insertion Imbalance

AVL tree after right rotation of 18 about 10 (R about P).  Tree is now 
balanced.

40 (–1)

60 (–1)

20 (1) 50 (0)

25 (0)

15 (0) PQ

16 (0)10 (0)

18 (0)R
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• Over the next few slides we’ll work one big example 
constructing an AVL tree and show the balancing that must 
occur due to each insertion.

• Suppose that we start with an initially empty AVL tree and 
insert values in the following order:

3, 2, 1, 4, 5,  6, 7, 16, 15, 14, 13, 12, 11, 10, 8, 9

• Try constructing this tree yourself, then look at the steps on 
the following pages to check your work.

One Big Example of AVL Tree Insertions
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Big Example – Insert 3, Insert 2, Insert 1

3 (0)

P

Q

Step 1
insert 3

3 (–1)

2 (0)

Step 2
insert 2

3 (–2)

2 (–1)

1 (0)

Step 3:  insert 3
Case 1a insertion

After insertion 

3 (0)P

2 (0)

1 (0)

Q

After right rotation of 
Q about P
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Big Example – Insert 4, Insert 5

Step 4
insert 4

3 (1)

2 (1)

1 (0)

4 (0)

3 (2)P

2 (2)

1 (0)

Q 4 (1)

5 (0)

Step 5: insert 5
Case 1 insertion

after insertion 3 (0)P

2 (1)

1 (0) Q 4 (0)

5 (0)

after rotation
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Big Example – Insert 6

Step 6:  insert 6
Imbalance occurs at root

3 (0)

P 2 (2)

1 (0) Q 4 (1)

5 (1)

6 (0)after insertion

after rotation

3 (0)

P 2 (2)

1 (0)

Q 4 (1)

5 (1)

6 (0)

Insertion occurred in the right subtree of a right child, 
thus a left rotation is required.  The imbalance occurs 
at the root node of the tree in this case, so the left 
rotation is of 4 about 2.  Recall that the node about 
which the rotation is occurring is labeled P and the 
node which is rotating about P labeled Q.  So Q will be 
identified as P’s right child.
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Big Example – Insert 7

Step 7:  insert 7
Case 1a insertion

after rotation

3 (0)

2 (0)

1 (0) Q

4 (1)

5 (2)

6 (1)

7 (0)after insertion

P

3 (0)

2 (0)

1 (0)

Q

4 (0)

5 (0)

6 (0)

7 (0)
P
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Big Example – Insert 16, Insert 15

Steps 8 & 9
insert 16
insert 15

after insertion of both 
16 and 15

3 (0)

2 (0)

1 (0)

Q

4 (2)

5 (0)

6 (2)

7 (2) P

16 (–1)

15 (0)

The insertion of 16 causes no 
imbalance, however, the insertion of 15 
causes an imbalance at node 7.  Node 
7 is designated as P with its right child 
Q being node 16.  Thus, the insertion 
has occurred in the left subtree of a 
right child which is a case 2 insertion.  A 
double right-left rotation is required to 
rebalance the tree.

R
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Big Example – Right-Left Rotation After Insertion of 15

after right rotation of R 
about Q (15 about 16).

3 (0)

2 (0)

1 (0)

Q

4 (2)

5 (0)

6 (2)

7 (2) P

16 (–1)

15 (0)R

after left rotation of R 
about P (15 about 7).

3 (0)

2 (0)

1 (0)

Q

4 (1)

5 (0)

6 (1)

7 (0)P 16 (0)

15 (0) R
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Big Example – Insert 14

Step 10
insert 14

Case 2 insertion

after insertion

3 (0)

2 (0)

1 (0) Q

4 (–2)

5 (0)

6 (–2)

7 (1)

P

16 (0)

15 (–1)

R

14 (0)

after right rotation of 7 about 15 followed 
by a left rotation of 7 about 6.

3 (0)

2 (0)

1 (0) Q

4 (–1)

5 (0)

6 (–1)

7 (0)

P

16 (0)

15 (0)

R

14 (0)
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Big Example – Insert 13

Step 11
insert 13

Case 1 insertion
after single left rotation of 7 about 4.

3 (0)

2 (0)

1 (0)

Q

4 (–2)

5 (0)

6 (–1)

7 (–1)

P

16 (0)

15 (–1)

14 (–1)

13 (0)

Q

4 (0)

5 (0)

6 (–1)

3 (0)

2 (0)

1 (0)

7 (0)

P

16 (0)

15 (–1)

14 (–1)

13 (0)
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Big Example – Insert 12

Step 12
insert 12

Case 1a insertion
after single left rotation of 13 about 14.

Q

4 (0)

5 (0)

6 (–1)

3 (0)

2 (0)

1 (0)

7 (1)

P
16 (0)

15 (–2)

14 (–2)

13 (–1)

12 (0)

Q

4 (0)

5 (0)

6 (–1)

3 (0)

2 (0)

1 (0)

7 (1)

P

16 (0)

15 (–1)

14 (0)

13 (0)

12 (0)
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Big Example – Insert 11

Step 13
insert 11

Case 1a insertion
after single left rotation of 13 about 15.

Q

4 (0)

5 (0)

6 (–1)

3 (0)

2 (0)

1 (0)

7 (1)

P

16 (0)

15 (–2)

14 (0)

13 (–1)

12 (–1)

11 (0)

Q4 (0)

5 (0)

6 (–1)

3 (0)

2 (0)

1 (0)

7 (0)

P

16 (0)

15 (0)

14 (0)

13 (0)

12 (–1)

11 (0)
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Big Example – Insert 10

Step 14
insert 10

Case 1a insertion

Tree has become too large to show both 
the insertion and rotation on the same 
page, so the rotation to remove the  
imbalance caused by the insertion of node 
with value 10 is shown on the next page..

Q

4 (0)

5 (0)

6 (–1)

3 (0)

2 (0)

1 (0)

7 (1)

P

16 (0)

15 (0)

14 (0)

13 (–1)

12 (–2)

11 (–1)

10 (0)
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Big Example – Single Right Rotation to Handle Insert  
of 10

After single right rotation of 11 about 12 (Q about P).

Q

4 (0)

5 (0)

6 (–1)

3 (0)

2 (0)

1 (0)

7 (0)

P
16 (0)

15 (0)

14 (0)

13 (0)

12 (0)

11 (0)

10 (0)
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Big Example – Insert 8

Insertion of node containing 8 causes no imbalance.

4 (0)

5 (0)

6 (–1)

3 (0)

2 (0)

1 (0)

7 (1)

16 (0)
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Big Example – Insert 9

Insertion of node containing 9 causes 
an imbalance at node containing 10.  

4 (0)

5 (0)
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Q
Insertion of 9 is in the right 
subtree of the left child of node 
10.  So a double left-right 
rotation is required to restore 
balance to the tree.

P



COP 3502: Computer Science I  (Note Set #22)              Page 52 © Mark Llewellyn

Big Example – Final Tree After Double Rotation 
Following Insert of 9

First left rotation of 9 about 8, followed 
by right rotation of 9 about 10 restores 

balance to the tree.
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