
COP 3502: Computer Science I (Note Set #22) Page 1 © Mark Llewellyn

COP 3502: Computer Science I
Spring 2004

– Note Set 22 –
Self-Balancing Trees - AVL Trees

School of Electrical Engineering and Computer Science
University of Central Florida

Instructor : Mark Llewellyn
markl@cs.ucf.edu
CC1 211, 823-2790
http://www.cs.ucf.edu/courses/cop3502/spr04

COP 3502: Computer Science I (Note Set #22) Page 2 © Mark Llewellyn

• As we have discussed within the context of the binary
search tree, the performance of the algorithms which utilize
the BST are dependent upon the height of the tree.

• We have looked at the DSW algorithm which takes an
existing un-balanced BST and converts it into a perfectly
balanced BST.

• In this set of notes we will look at a binary search tree
which is self-balancing. In other words, each insertion and
deletion operation will re-balance the tree. In this fashion,
the tree is never un-balanced.

• There are many different types of self-balancing search
trees. We’ll examine just one of these in this course.

Self-balancing Binary Search Trees

COP 3502: Computer Science I (Note Set #22) Page 3 © Mark Llewellyn

• AVL trees were originally called admissible trees, but were
subsequently renamed after their discovery in 1962 by the Russian
mathematicians Georgii M. Adel'son-Vel'skii and Evgenii M. Landis.

• An AVL tree is a binary search tree with a balance property (a structure
property). The balance condition ensures that the height of the tree is
O(log n) (its actually 1.44log n) where n is the number of nodes in the
tree.

• All insertions, deletions, and searches in an AVL tree can be achieved
in O(log n) time.

• In a completely balanced tree, the left and right subtrees of any node
would have the same height. Since this can only occur for trees which
are full, this definition is too restrictive for general search trees. The
AVL tree relaxes this restriction to allow the heights of any two
subtrees to differ by no more than 1.

AVL Trees

COP 3502: Computer Science I (Note Set #22) Page 4 © Mark Llewellyn

AVL Trees (cont.)
DEFINITION:

An AVL tree is a binary search tree in which the height of the left and right subtrees
of the root differ by at most 1 and in which the left and right subtrees are also AVL
trees.

With each node of an AVL tree is associated a balance factor that is determined by
subtracting the height of the right subtree minus the height of the left subtree. For
each node in an AVL tree the value of the balance factor is either –1, 0, or 1. The
height of an empty subtree is assumed to be 0.

0 0

0 0

0

1

0

0

?1

0

0

?1

?1

0 0 0

0

Some AVL trees showing the
balance factor in each node.

COP 3502: Computer Science I (Note Set #22) Page 5 © Mark Llewellyn

Non-AVL Trees
?2

1

0

Some non-AVL trees showing the balance factor in each node.

2

0 ?2

1

0

?1

1

?2

0

?1

?1 ?1 0

1

1

0

?1

0

0

00

0

2

0

0 0

0

?2

?1

0 0

1

2

COP 3502: Computer Science I (Note Set #22) Page 6 © Mark Llewellyn

• Notice that the definition of an AVL tree does not require that all the
leaf nodes be on the same or adjacent levels as was the case for a
perfectly balanced binary search tree.

• It is possible to construct AVL trees which are quite skewed. Shown
below are some examples.

Skewed AVL Trees

1

0 1

0

?1

?1?1

0 0?1

0

0

1

1 1

11 1

10

0

0 0

Some skewed AVL trees

COP 3502: Computer Science I (Note Set #22) Page 7 © Mark Llewellyn

• The insertion of a new node into an AVL tree begins in the same fashion as
insertion into a standard BST. Basically a search for the new value occurs
which will be guaranteed to end on a null pointer in a leaf node with the
actual insertion taking place in either the left or right subtree of that leaf
node depending on its value compared to that in the leaf node. Once this is
done, the balance must be checked and restored if the tree has become
unbalanced.

• It often turns out that the new node can be inserted without changing the
height of the subtree. If this occurs, then the balance of the root will not
change.

• Even when the height of the subtree has increased, it may be that it was the
shorter subtree that increased in height, so only the balance factor of the
root will change.

• The only case that can cause difficulty occurs when the new node is added
to a subtree of the root which is taller than the other subtree and the height
of the taller subtree increases. This would cause the one subtree to have a
height 2 more than the other, violating the AVL structure property.

Insertion Into An AVL Tree

COP 3502: Computer Science I (Note Set #22) Page 8 © Mark Llewellyn

• Thus, an AVL tree can become unbalanced due to an insertion
in one of four ways (two of which are symmetric to the
others).

1. Inserting a new node into the right subtree of a right child.

a. Symmetric case is insertion of new node into the left subtree of a left child.

2. Inserting a new node into the left subtree of a right child.

a. Symmetric case is insertion of a new node into the right subtree of a left
child.

• The first case is the simpler of the two to handle, so we’ll
examine this case first.

Insertion Into An AVL Tree (cont.)

COP 3502: Computer Science I (Note Set #22) Page 9 © Mark Llewellyn

Case 1: Insertion Into the Right Subtree of a Right Child

P (1)

Q (0)

hh

h

Initial AVL tree before insertion

h+1

P (2)

Q (1)

h+1

h

h

AVL tree after insertion into
right subtree of right child Q

h+2

COP 3502: Computer Science I (Note Set #22) Page 10 © Mark Llewellyn

• As the diagram on the previous slide clearly indicates, the
AVL tree has become imbalanced due to the insertion of a
new node into the right subtree of the right child of P.

• Note that the point of imbalance is at node P, the parent of the
right child into whose subtree the insertion occurred.

• The question now becomes, how do we rebalance the tree
after this insertion?

• The answer is via a rotation of Q about P. Notice that this will
be a left rotation, effectively bring the subtree rooted at Q, up
and to the left in the tree and pushing P down and to the left.
This is illustrated in the next slide.

Handling the Imbalance for Case 1

COP 3502: Computer Science I (Note Set #22) Page 11 © Mark Llewellyn

Single Left Rotation Handles Case 1 Imbalance

P (2)

Q (1)

h+1

h

h

Result of a case 1 imbalance
in an AVL tree after insertion
into right subtree of right child
Q

h+2
h+1

hh

AVL tree after single left rotation
of Q about P. Balance has been
restored in the tree.

P (0)

Q (0)

COP 3502: Computer Science I (Note Set #22) Page 12 © Mark Llewellyn

Example – Case 1 Insertion Imbalance

Initial AVL tree

20 (1)

12 (–1) 30 (1)

8 (0) 25 (0) 50 (0)

40 (0) 60 (0)

P

Q

COP 3502: Computer Science I (Note Set #22) Page 13 © Mark Llewellyn

Example – Case 1 Insertion Imbalance (cont.)

AVL tree after insertion of new node containing 55. Note the change in balance factors from the
initial tree. Balance factors that have changed are shown in bold. Notice that they have
changed all the way to the root of the tree.

20 (2)

12 (–1) 30 (2)

8 (0) 25 (0) 50 (1)

40 (0) 60 (–1)

P

Q

55 (0)

COP 3502: Computer Science I (Note Set #22) Page 14 © Mark Llewellyn

Example – Case 1 Insertion Imbalance (cont.)

AVL tree after left rotation of 50 about 30 (Q about P). Note that the root of the tree is now
balanced.

20 (1)

12 (–1) 50 (0)

8 (0) 30 (0) 60 (–1)P

Q

55 (0)40 (0)25 (0)

COP 3502: Computer Science I (Note Set #22) Page 15 © Mark Llewellyn

Symmetric Case 1a: Insertion Into the Left Subtree of a
Left Child

P (–1)

Q (0)

h h

h

Initial AVL tree before insertion

h+1

P (–2)

Q (–1)

h+1

h

h

AVL tree after insertion into
left subtree of left child Q

h+2

COP 3502: Computer Science I (Note Set #22) Page 16 © Mark Llewellyn

• As the diagram on the previous slide clearly indicates, the
AVL tree has become imbalanced due to the insertion of a
new node into the left subtree of the left child of P.

• Note that the point of imbalance is at node P, the parent of the
left child into whose subtree the insertion occurred.

• As with case 1, the imbalance is removed via a rotation of Q
about P. In this case, however, the rotation will be a right
rotation, effectively bringing the subtree rooted at Q up and to
the right in the tree pushing P down and to the right. This is
illustrated in the next slide.

Handling the Imbalance for Symmetric Case 1a

COP 3502: Computer Science I (Note Set #22) Page 17 © Mark Llewellyn

Single Right Rotation Handles Case 1a Imbalance

P (–2)

Q (–1)

h+1

h

h

Result of a case 1a imbalance in
an AVL tree caused by the
insertion of a new node into the
left subtree of the left child of P

h+2

AVL tree after a single right
rotation of Q about P. Balance
has been restored to the tree.

P (0)

Q (0)

h+1
h h

COP 3502: Computer Science I (Note Set #22) Page 18 © Mark Llewellyn

Example – Case 1a Insertion Imbalance

50 (–1)

60 (1)40 (–1)

70 (0)45 (0)30 (0)

35 (0)20 (0)

P

Q

Initial AVL Tree

COP 3502: Computer Science I (Note Set #22) Page 19 © Mark Llewellyn

Example – Case 1a Insertion Imbalance

AVL tree after insertion of node with value 25. Insertion in the left subtree of the left child P.
Balance factors that have changed from the initial tree are shown in bold.

50 (–2)

60 (1)40 (–2)

70 (0)45 (0)30 (–1)

35 (0)20 (1)

P

Q

25 (0)

COP 3502: Computer Science I (Note Set #22) Page 20 © Mark Llewellyn

Example – Case 1a Insertion Imbalance

AVL tree after a single right rotation of 30 about 40. Note that
this balances the tree all the way to the root.

50 (–1)

60 (1)30 (0)

70 (0)40 (0)20 (1)

35 (0)

P

Q

25 (0) 45 (0)

COP 3502: Computer Science I (Note Set #22) Page 21 © Mark Llewellyn

Case 2: Insertion Into the Left Subtree of a Right Child

P (1)

Q (0)

hh

h

Initial AVL tree before insertion

h+1

P (2)

Q (?1)

h+1

h

h

AVL tree after insertion into
left subtree of right child Q

h+2

COP 3502: Computer Science I (Note Set #22) Page 22 © Mark Llewellyn

A Closer Look At What Happens To The Tree In Case 2

P (2)

Q (?1)

h+1

h

h

AVL tree after insertion into
left subtree of right child Q

h+2

P (2)

Q (?1)

h

h

Assuming insertion was in
the right subtree of the left
child of Q (call this node R)

R (1)

h
h?1

COP 3502: Computer Science I (Note Set #22) Page 23 © Mark Llewellyn

• As the diagram on the previous slide clearly indicates, the
AVL tree has become imbalanced due to the insertion of a
new node into the left subtree of the right child of P.

• As can be seen on the next slide, a single rotation does not
correct the imbalance of the tree rooted at P (it actually
induces a further imbalance in the tree rooted at R after the
first rotation occurs).

• The solution to the problem is a second rotation. For case 2,
(insertion was in the left subtree of a right child) the first
rotation is a right rotation of R about Q and the second
rotation is a left rotation of R about P. For the symmetric case
2a (insertion is in the right subtree of a left child), we’ll see
shortly that the first rotation will be a right rotation and the
second will be a left rotation.

Handling the Imbalance for Case 2

COP 3502: Computer Science I (Note Set #22) Page 24 © Mark Llewellyn

Double Rotation Handles Case 2 Imbalance

P (2)

Q (?1)

h

h

Resulting imbalance in
case 2 insertion

R (1)

h
h?1

After right rotation of R
about Q

P (2)

Q (0)

h

h

R (2)

h

h?1

After left rotation of R
about P. The complete
set of rotations has been
a right followed by a left or
a RL double rotation.

P (–1) Q (0)

h
h

R (0)

h
h?1

COP 3502: Computer Science I (Note Set #22) Page 25 © Mark Llewellyn

Example – Case 2 Insertion Imbalance

40 (–1)

60 (–1)20 (1)

50 (0)30 (0)15 (0)

25 (0) 35 (0)

P

Q

Initial AVL Tree

COP 3502: Computer Science I (Note Set #22) Page 26 © Mark Llewellyn

Example – Case 2 Insertion Imbalance

AVL tree after insertion of node with value 28. Balance factors that have
changed from the initial tree are shown in bold.

40 (–2)

60 (–1)20 (2)

50 (0)30 (–1)15 (0)

25 (1) 35 (0)

P

Q

28 (0)

R

COP 3502: Computer Science I (Note Set #22) Page 27 © Mark Llewellyn

Example – Case 2 Insertion Imbalance

AVL tree after right rotation of R about Q (25 about 30). Note that the tree is
not balanced after this first rotation.

40 (–2)

60 (–1)20 (2)

50 (0)

30 (0)

15 (0) 25 (2)

35 (0)

P

Q

28 (0)

R

COP 3502: Computer Science I (Note Set #22) Page 28 © Mark Llewellyn

Example – Case 2 Insertion Imbalance

AVL tree after a second rotation, this one a left rotation of R about P (25
about 20). Note that the tree is now balanced.

40 (–1)

60 (–1)

20 (–1) 50 (0)30 (0)

25 (0)

35 (0)

P Q

28 (0)

R

15 (0)

COP 3502: Computer Science I (Note Set #22) Page 29 © Mark Llewellyn

Symmetric Case 2a: Insertion Into the Right Subtree of
a Left Child

P (?1)

Q (0)

h h

h

Initial AVL tree before insertion

h+1

P (?2)

Q (1)

h+1

h

h

AVL tree after insertion into
right subtree of left child Q

h+2

COP 3502: Computer Science I (Note Set #22) Page 30 © Mark Llewellyn

A Closer Look At What Happens To The Tree In
Symmetric Case 2a

P (?2)

Q (1)

h+1

h

h

AVL tree after insertion into
right subtree of left child Q

h+2

P (?2)

Q (1)

h

h

Assuming insertion was in
the left subtree of the right
child of Q (call this node R)

R (?1)

h
h?1

COP 3502: Computer Science I (Note Set #22) Page 31 © Mark Llewellyn

• As the diagram on the previous slide clearly indicates, the
AVL tree has become imbalanced due to the insertion of a
new node into the right subtree of the left child of P.

• As was the case for the symmetric case 2, a double rotation is
required to remove the imbalance in the tree. In this case, the
first rotation will be a left rotation of R about Q followed by a
right rotation of R about P.

• This is illustrated in the next slide, followed by an example.

Handling the Imbalance for Symmetric Case 2a

COP 3502: Computer Science I (Note Set #22) Page 32 © Mark Llewellyn

Double Rotation Handles Symmetric Case 2a Imbalance

P (?2)

Q (1)

h

h

Symmetric case 2a
insertion imbalance.

R (?1)

h
h?1

P (–2)

Q (0)

h

h

R (–2)

h

h?1

After left rotation of R
about Q. Note tree is still
imbalanced, now both at
R and P.

P (1)Q (0)

h
h

R (0)

h
h?1

After right rotation of Q
about R. Note tree is now
balanced.

COP 3502: Computer Science I (Note Set #22) Page 33 © Mark Llewellyn

Example – Symmetric Case 2a Insertion Imbalance

40 (–1)

60 (–1)20 (–1)

50 (0)25 (0)15 (0)

P

Q

Initial AVL Tree

10 (0) 18 (0)

COP 3502: Computer Science I (Note Set #22) Page 34 © Mark Llewellyn

Example – Symmetric Case 2a Insertion Imbalance

AVL tree after insertion of node with value 16. Balance factors that have
changed are shown in bold.

40 (–2)

60 (–1)20 (–2)

50 (0)25 (0)15 (1)

P

Q

10 (0) 18 (–1)

16 (0)

R

COP 3502: Computer Science I (Note Set #22) Page 35 © Mark Llewellyn

Example – Symmetric Case 2a Insertion Imbalance

AVL tree after left rotation of 18 about 15 (R about Q). Notice that the
balance factors clearly indicate the tree is not balanced.

40 (–2)

60 (–1)20 (–2)

50 (0)25 (0)

15 (0)

P

Q

16 (0)10 (0)

18 (–2)R

COP 3502: Computer Science I (Note Set #22) Page 36 © Mark Llewellyn

Example – Symmetric Case 2a Insertion Imbalance

AVL tree after right rotation of 18 about 10 (R about P). Tree is now
balanced.

40 (–1)

60 (–1)

20 (1) 50 (0)

25 (0)

15 (0) PQ

16 (0)10 (0)

18 (0)R

COP 3502: Computer Science I (Note Set #22) Page 37 © Mark Llewellyn

• Over the next few slides we’ll work one big example
constructing an AVL tree and show the balancing that must
occur due to each insertion.

• Suppose that we start with an initially empty AVL tree and
insert values in the following order:

3, 2, 1, 4, 5, 6, 7, 16, 15, 14, 13, 12, 11, 10, 8, 9

• Try constructing this tree yourself, then look at the steps on
the following pages to check your work.

One Big Example of AVL Tree Insertions

COP 3502: Computer Science I (Note Set #22) Page 38 © Mark Llewellyn

Big Example – Insert 3, Insert 2, Insert 1

3 (0)

P

Q

Step 1
insert 3

3 (–1)

2 (0)

Step 2
insert 2

3 (–2)

2 (–1)

1 (0)

Step 3: insert 3
Case 1a insertion

After insertion

3 (0)P

2 (0)

1 (0)

Q

After right rotation of
Q about P

COP 3502: Computer Science I (Note Set #22) Page 39 © Mark Llewellyn

Big Example – Insert 4, Insert 5

Step 4
insert 4

3 (1)

2 (1)

1 (0)

4 (0)

3 (2)P

2 (2)

1 (0)

Q 4 (1)

5 (0)

Step 5: insert 5
Case 1 insertion

after insertion 3 (0)P

2 (1)

1 (0) Q 4 (0)

5 (0)

after rotation

COP 3502: Computer Science I (Note Set #22) Page 40 © Mark Llewellyn

Big Example – Insert 6

Step 6: insert 6
Imbalance occurs at root

3 (0)

P 2 (2)

1 (0) Q 4 (1)

5 (1)

6 (0)after insertion

after rotation

3 (0)

P 2 (2)

1 (0)

Q 4 (1)

5 (1)

6 (0)

Insertion occurred in the right subtree of a right child,
thus a left rotation is required. The imbalance occurs
at the root node of the tree in this case, so the left
rotation is of 4 about 2. Recall that the node about
which the rotation is occurring is labeled P and the
node which is rotating about P labeled Q. So Q will be
identified as P’s right child.

COP 3502: Computer Science I (Note Set #22) Page 41 © Mark Llewellyn

Big Example – Insert 7

Step 7: insert 7
Case 1a insertion

after rotation

3 (0)

2 (0)

1 (0) Q

4 (1)

5 (2)

6 (1)

7 (0)after insertion

P

3 (0)

2 (0)

1 (0)

Q

4 (0)

5 (0)

6 (0)

7 (0)
P

COP 3502: Computer Science I (Note Set #22) Page 42 © Mark Llewellyn

Big Example – Insert 16, Insert 15

Steps 8 & 9
insert 16
insert 15

after insertion of both
16 and 15

3 (0)

2 (0)

1 (0)

Q

4 (2)

5 (0)

6 (2)

7 (2) P

16 (–1)

15 (0)

The insertion of 16 causes no
imbalance, however, the insertion of 15
causes an imbalance at node 7. Node
7 is designated as P with its right child
Q being node 16. Thus, the insertion
has occurred in the left subtree of a
right child which is a case 2 insertion. A
double right-left rotation is required to
rebalance the tree.

R

COP 3502: Computer Science I (Note Set #22) Page 43 © Mark Llewellyn

Big Example – Right-Left Rotation After Insertion of 15

after right rotation of R
about Q (15 about 16).

3 (0)

2 (0)

1 (0)

Q

4 (2)

5 (0)

6 (2)

7 (2) P

16 (–1)

15 (0)R

after left rotation of R
about P (15 about 7).

3 (0)

2 (0)

1 (0)

Q

4 (1)

5 (0)

6 (1)

7 (0)P 16 (0)

15 (0) R

COP 3502: Computer Science I (Note Set #22) Page 44 © Mark Llewellyn

Big Example – Insert 14

Step 10
insert 14

Case 2 insertion

after insertion

3 (0)

2 (0)

1 (0) Q

4 (–2)

5 (0)

6 (–2)

7 (1)

P

16 (0)

15 (–1)

R

14 (0)

after right rotation of 7 about 15 followed
by a left rotation of 7 about 6.

3 (0)

2 (0)

1 (0) Q

4 (–1)

5 (0)

6 (–1)

7 (0)

P

16 (0)

15 (0)

R

14 (0)

COP 3502: Computer Science I (Note Set #22) Page 45 © Mark Llewellyn

Big Example – Insert 13

Step 11
insert 13

Case 1 insertion
after single left rotation of 7 about 4.

3 (0)

2 (0)

1 (0)

Q

4 (–2)

5 (0)

6 (–1)

7 (–1)

P

16 (0)

15 (–1)

14 (–1)

13 (0)

Q

4 (0)

5 (0)

6 (–1)

3 (0)

2 (0)

1 (0)

7 (0)

P

16 (0)

15 (–1)

14 (–1)

13 (0)

COP 3502: Computer Science I (Note Set #22) Page 46 © Mark Llewellyn

Big Example – Insert 12

Step 12
insert 12

Case 1a insertion
after single left rotation of 13 about 14.

Q

4 (0)

5 (0)

6 (–1)

3 (0)

2 (0)

1 (0)

7 (1)

P
16 (0)

15 (–2)

14 (–2)

13 (–1)

12 (0)

Q

4 (0)

5 (0)

6 (–1)

3 (0)

2 (0)

1 (0)

7 (1)

P

16 (0)

15 (–1)

14 (0)

13 (0)

12 (0)

COP 3502: Computer Science I (Note Set #22) Page 47 © Mark Llewellyn

Big Example – Insert 11

Step 13
insert 11

Case 1a insertion
after single left rotation of 13 about 15.

Q

4 (0)

5 (0)

6 (–1)

3 (0)

2 (0)

1 (0)

7 (1)

P

16 (0)

15 (–2)

14 (0)

13 (–1)

12 (–1)

11 (0)

Q4 (0)

5 (0)

6 (–1)

3 (0)

2 (0)

1 (0)

7 (0)

P

16 (0)

15 (0)

14 (0)

13 (0)

12 (–1)

11 (0)

COP 3502: Computer Science I (Note Set #22) Page 48 © Mark Llewellyn

Big Example – Insert 10

Step 14
insert 10

Case 1a insertion

Tree has become too large to show both
the insertion and rotation on the same
page, so the rotation to remove the
imbalance caused by the insertion of node
with value 10 is shown on the next page..

Q

4 (0)

5 (0)

6 (–1)

3 (0)

2 (0)

1 (0)

7 (1)

P

16 (0)

15 (0)

14 (0)

13 (–1)

12 (–2)

11 (–1)

10 (0)

COP 3502: Computer Science I (Note Set #22) Page 49 © Mark Llewellyn

Big Example – Single Right Rotation to Handle Insert
of 10

After single right rotation of 11 about 12 (Q about P).

Q

4 (0)

5 (0)

6 (–1)

3 (0)

2 (0)

1 (0)

7 (0)

P
16 (0)

15 (0)

14 (0)

13 (0)

12 (0)

11 (0)

10 (0)

COP 3502: Computer Science I (Note Set #22) Page 50 © Mark Llewellyn

Big Example – Insert 8

Insertion of node containing 8 causes no imbalance.

4 (0)

5 (0)

6 (–1)

3 (0)

2 (0)

1 (0)

7 (1)

16 (0)

15 (0)

14 (0)

13 (–1)

12 (0)

11 (–1)

10 (–1)

8 (0)

COP 3502: Computer Science I (Note Set #22) Page 51 © Mark Llewellyn

Big Example – Insert 9

Insertion of node containing 9 causes
an imbalance at node containing 10.

4 (0)

5 (0)

6 (–1)

3 (0)

2 (0)

1 (0)

7 (2)

16 (0)

15 (0)

14 (0)

13 (–2)

12 (0)

11 (–2)

10 (–2)

8 (1)

9 (0)R

Q
Insertion of 9 is in the right
subtree of the left child of node
10. So a double left-right
rotation is required to restore
balance to the tree.

P

COP 3502: Computer Science I (Note Set #22) Page 52 © Mark Llewellyn

Big Example – Final Tree After Double Rotation
Following Insert of 9

First left rotation of 9 about 8, followed
by right rotation of 9 about 10 restores

balance to the tree.

4 (0)

5 (0)

6 (–1)

3 (0)

2 (0)

1 (0)

7 (1)

16 (0)

15 (0)

14 (0)

13 (–1)

12 (0)

11 (–1)

10 (0)8 (0)

9 (0)
R

Q

P

