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• As we mentioned previously, the run-time of our search 
algorithm (also insertion and deletion algorithms) is highly 
dependent on the balance of the BST being searched.

• If the data from which a BST is to be built arrives in sorted 
order, the resulting tree will be a right skewed tree that will 
resemble a linear list.  The resulting search time will be 
O(n) rather than the O(log2n) that should be expected.

– If the data arrives in reverse sorted order the resulting tree will be 
left skewed.

• Since the run-time of our algorithms is dependent on the 
structure property of the BST as well as the ordering 
property, we need to be sure that the BST is as short and fat 
as possible rather than tall and skinny.

The Need to Balance Binary Search Trees
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A Right-Skewed Binary Search Tree
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A Left-Skewed Binary Search Tree
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An Un-balanced Binary Search Tree
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An unbalanced BST

This tree is also left-skewed.

The number of potential nodes to be 
searched for values less than 26 is 
9 while the number of potential 
nodes to be searched for values 
greater than 26 is 2.  Height of left 
subtree is 7, but height of right 
subtree is 3.
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• What we need to do is take an un-balanced BST and 
balance the tree at each subtree level and maintain the 
search tree ordering property in the process.

Balancing Binary Search Trees
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• A binary tree is height balanced (or simply balanced), if the  height of 
the two subtrees of any node in the tree differs by at most 1.  Stated 
another way, a binary tree is balanced if the difference in height of the 
subtrees of any node is either 0 or 1.

• A binary tree is perfectly balanced if it is balanced and all of the leaf 
nodes of the tree are found on one or two levels of the tree.

• For example, a perfectly balanced binary tree consisting of 10,000 
nodes, the height of this tree will be log(10,001) = 13.289 = 14.  In 
practical terms, this means that if 10,000 elements are stored in a 
perfectly balanced tree, then at most 14 nodes will need to be checked 
to locate a specific element.  This is a substantial difference when 
compared to the worst case of 10,000 elements in a list!  Therefore, in 
trees which are to be used primarily for searching, it is worth the effort 
to either build the tree so that it is balanced or modify the existing tree 
so that it is balanced.

Balancing Binary Search Trees (cont.)
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• There are a number of techniques that have been developed to balance 
binary trees.  Some of the techniques consist of constantly restructuring 
the tree when elements arrive and lead to a balanced tree.  Some of them 
consist of reordering the data and then build the tree according to some 
ordering of the data which will ensure that the tree is balanced when it 
is constructed.

• As we saw earlier, if the data which is used to construct a BST arrives 
in either ascending or descending order the tree will be skewed to the 
point of representing a linear list.  Thus, if the smallest value in the data 
set is the first value read, the root of the tree will contain only a right 
subtree.  Similarly, if the largest value in the data set is entered first, the 
root of the tree will contain only a left subtree.  Before looking at more 
sophisticated algorithms to balance binary trees, lets examine a very 
simple technique to construct a balanced BST.

Balancing Binary Search Trees (cont.)
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• When the data arrive, store all of them into an array.  Once all the data 
have arrived, sort the array using an efficient sorting algorithm.

• Once sorted, the element at the midpoint of the array will become the 
root of the BST.  The array can now be viewed as consisting of two 
subarrays, one to the left of the midpoint and one to the right of the 
midpoint.

• The middle element in the left subarray becomes the left child of the 
root node and the middle element in the right subarray becomes the 
right child of the root.

• This process continues with further subdivision of the original array 
until all the elements in the array have been positioned in the BST.

• A slight modification of this would be to completely generate the left 
subtree of the root before generating the right subtree of the root.  If this 
is done, then the very simple recursive procedure shown on the next 
slide can be used to generate a balanced BST.

Constructing A Balanced BST
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An Algorithm For Constructing A Balanced BST

void balance( int data[], int first, int last) {

if (first <= last) {

int middle = (first + last)/2; //find middle element in the array

insert(data[middle]);  //add node to the tree

balance(data, first, middle-1);

balance(data, middle+1, last);

}

}

An example of the execution of this algorithm is shown on the next slide.
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Example - Constructing A Balanced BST
Stream of arriving data: 5, 1, 9, 8, 7, 0, 2, 3, 4, 6   Array of sorted data: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Construct left side of BST first.

0 1 2 3 4 5 6 7 8 9(a)

0 1 2 3 4 5 6 7 8 9(b)

Resulting BST: 4

Resulting BST:

0 1 2 3 4 5 6 7 8 9(c) Resulting BST:

4

1

4

1

0 2
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Example - Constructing A Balanced BST (cont.)

0 1 2 3 4 5 6 7 8 9(d) Resulting BST: 4

1

0 2

3

After completing this step, the left side 
of the BST is completely constructed.

0 1 2 3 4 5 6 7 8 9(e)

Now construct right side of BST

Resulting BST: 4

1
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3

7
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Example - Constructing A Balanced BST (cont.)

0 1 2 3 4 5 6 7 8 9(f) Resulting BST: 4

1

0 2
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5 8

0 1 2 3 4 5 6 7 8 9(g)

Final BST: 4
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0 2
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5 8

6 9

The numbers shown outside of 
each node represent the 
difference in height of the left 
and right subtrees of that node.  
Notice that all of these values 
are either 0 or 1 indicating that 
the tree is balanced.  This tree 
also happens to be perfectly 
balanced.
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• While the previous algorithm for constructing a balanced binary search 
tree is certainly simple, it has one serious drawback:  all the data must 
be put into an array before the balanced tree can be created.

• This algorithm will not work when the tree must be in use before all of 
the data have arrived.

• Can you think of a way to create a balanced tree from an existing 
unbalanced tree without requiring the data to be sorted as this algorithm 
requires?  

– One way to do it would be to read the data from an unbalanced tree into an 
array using an inorder traversal of the tree.  The unbalanced tree could then 
be destroyed and a new one created from the data in the array using the 
previous algorithm.  In this fashion, no sort is required to put the data into 
order!

Problems with the Previous Algorithm
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• While the previous algorithm was certainly simple, it was 
basically inefficient in that an additional array was required 
which typically required sorting before the balanced tree 
could be created.  To avoid the sorting, required 
deconstructing an existing unbalanced tree and 
reconstructing the tree, which is quite inefficient except for 
very small trees (in which case their unbalanced nature is 
probably not a hindrance in any case).

• There are however, several algorithms which require very 
little additional storage for intermediate variables and use 
no sorting procedure.  The DSW algorithm, developed by 
Colin Day and later improved by Quentin Stout and Bette 
Warren, is a very elegant algorithm which falls into this 
category.  This is the algorithm we will examine.

Balancing Existing BSTs
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• The basic building block for tree transformations in the DSW algorithm 
is the rotation.

• There are two types of rotations, left rotations and right rotations, which 
are symmetric to one another.

• The rotation of a tree occurs about its root.

• The rotation algorithms that we will look at will use the following 
notation to identify nodes in a tree.  The node Ch identifies a child node, 
the node Par identifies a nodes parent and the node Gr identifies a nodes 
grandparent.

• In the rotations that we will examine, a rotation always rotates a child 
about its parent.  Left children rotate to the right about the parent and 
right children rotate to the left about the parent.

Balancing Existing BSTs (cont.)
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Right Rotations
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Right Rotation - Example

Tree before right rotation of 16 
about 19 occurs

14

1

0 2

19

16 20

1815

17

14

1

0 2 19

16

2018

15

17

Tree after right rotation of 16 about 19 
has occurred.  Notice that the resulting 

tree is still a BST.
Right rotation causes 16 to slide up the 
tree to the right and 19 to slide down the 

tree to the right.
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Right Rotation Algorithm

//rotate Ch about Par,  Gr is grandparent of Ch, Par is parent of Ch

rotateRight (Gr, Par, Ch)

if Par is  not the root of the tree //i.e., Gr is not null

grandparent Gr of child Ch becomes Ch’s parent by replacing Par;

right subtree of Ch becomes left subtree of Ch’s parent Par;

node Ch acquires Par as its right child;
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Left Rotations
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Left Rotation - Example

Tree before right rotation of 15 
about 10 occurs
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Tree after right rotation of 15 about 10 
has occurred.  Notice that the resulting 

tree is still a BST.

Left rotation causes 15 to slide up the tree 
to the left and 10 to slide down the tree to 

the left.
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Left Rotation Algorithm

//rotate Ch about Par,  Gr is grandparent of Ch, Par is parent of Ch

rotateLeft (Gr, Par, Ch)

if Par is  not the root of the tree //i.e., Gr is not null

grandparent Gr of child Ch becomes Ch’s parent by replacing Par;

left subtree of Ch becomes right subtree of Ch’s parent Par;

node Ch acquires Par as its left child;
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• The DSW algorithm is a two-step algorithm which results 
in a perfectly balanced tree.

• The first step takes an unbalanced BST and converts the 
tree into a backbone (sometimes called a vine).  The 
backbone is simply an ordered linear list of the nodes that 
comprise the BST.

• The second step of the algorithm converts the backbone into 
a perfectly balanced tree by performing a series of rotations 
about the root of the tree.  The total number of rotations that 
are performed is a function of the number of nodes in the 
tree and the resulting height of a complete tree consisting of 
the number of nodes in the tree.

The DSW Algorithm
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Step #1 of the DSW Algorithm

Creating the Backbone 
//Create a backbone (vine) from an unbalanced BST

createBackbone (root, n)

{

tmp = root;

while (tmp != null)

if tmp has a left child

rotate this child about tmp;  //this is a right rotation

set tmp to the child which just became the parent;

else set tmp to its right child;

}

An example illustrating this part of the DSW 
algorithm begins on the next page
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Creating the Backbone
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1.  Initial unbalanced BST
2. First location of tmp.  At this node, tmp 

has no left child, so it simply advances 
down the tree (to the right).
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Creating the Backbone (cont.)

2. Location of tmp at first node with a left 
child.  The left child of this node is right 
rotated about tmp.
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4. Backbone after right 
rotation of 15 about 20.
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Creating the Backbone (cont.)
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5. Next location of tmp where a left 
child exists.
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6. Backbone after right 
rotation of 25 about 30.
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Creating the Backbone (cont.)

7. Notice that tmp has not moved and 
yet after the previous rotation, still 
has a left child so another rotation 
about the same node (with value 
25 now) occurs.

tmp
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8. Tree after rotating 23 
about 25.
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Creating the Backbone (cont.)
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10. Final backbone.
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9. Final location of tmp with 
a left child.  Will cause 
right rotation of 28 about 
30.
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• Since performing a rotation requires knowledge about the 
parent of tmp, an additional reference must be maintained 
when the algorithm is implemented.

• In the best case, the tree is already a backbone (i.e., totally 
right skewed) and the while loop of the algorithm will 
execute n times and no rotations are performed.

• In the worst case, when the root does not have a right child, 
the while loop will be executed 2n-1 times and n-1 rotations 
will be performed, where n is the number of nodes in the 
tree.

• Thus, the run time of the first phase of the DSW algorithm 
is O(n).

Analysis of Step 1 of the DSW Algorithm
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• In the second phase, the backbone is transformed into a tree, but 
this time the tree will be perfectly balanced by having leaves only 
on two adjacent levels.

• In each pass down the backbone, every second node is rotated 
about its parent.

• One such pass decreases the size of the backbone by one-half.

• Only the first pass may not reach the end of the backbone.  It is 
used to account for the difference between the number n of nodes 
in the current tree and the number 2lg(n+1)-1 of nodes in the 
closest complete binary tree.  Thus, overflowing nodes are 
treated separately.

• The core (step 2) of the DSW algorithm is shown on the next 
slide.

Step #2 of the DSW Algorithm
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Step #2 of the DSW Algorithm 

Creating a Perfectly Balanced BST
createPerfectTree(n)

m = 2lg(n+1) -1; //n is the number of nodes in the backbone

//perform initial rotations – these are left rotations

make n-m rotations starting from the top of the backbone;

//perform remainder of necessary left rotations

while (m > 1)

m = m/2;

make m rotations starting from the top of the backbone;

An example illustrating the second part of the DSW 
algorithm begins on the next page
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Creating the BST From the Backbone

40

10

5

15

20

25

23

28

30

1. Initial backbone.  
Value of n is 9. Value 
of m is 7 since, 
2lg(n+1) -1 = 
2lg(9+1) -1 =  
23-1 = 7. Thus, 
n-m = 9-7 = 2, so 2 
initial rotations are 
made.
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2. BST/backbone after 

first two (n-m) initial 
rotations are 
completed.

40
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Creating the BST From the Backbone (cont.)
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3. Initially the value of m is 

7.  Upon entering the 
while loop the value of 
m is reset to 3 (7/2 = 3).  
So 3 more rotations are 
made.  These rotated 
nodes are highlighted.
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4. After performing the first 
of the three rotations 
indicated in step 3.  
Rotation of 20 about 10.  
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Creating the BST From the Backbone (cont.)

6. After performing the 
third of the three 
rotations indicated in 
step 3.  Rotation of 30 
about 28.  
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5. After performing the 
second of the three 
rotations indicated in 
step 3.  Rotation of 25 
about 23.  
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Creating the BST From the Backbone (cont.)

8. After performing the last 
rotation of 25 about 20.  
The resulting BST is 
perfectly balanced.
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7. Re-entering the while 
loop again resets the 
value of m from 3 to 1 
(3/2 = 1).  So one more 
rotation is performed.  
Rotating 25 about 20.
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• To compute the complexity of the tree building phase, note 
that the number of iterations performed by the while loop 
equals:

• The number of rotations can now be given by the 
expression:

• Thus, the number of rotations is O(n).  Because creating a 
backbone also required at most O(n) rotations, the cost of 
global rebalancing with the DSW algorithm is optimal in 
terms of time because it grows linearly with n and requires 
a very small and fixed amount of storage.

Analysis of Step 2 of the DSW Algorithm
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