
COP 3502: Computer Science I (Note Set #21) Page 1 © Mark Llewellyn

COP 3502: Computer Science I
Spring 2004

– Note Set 21 –
Balancing Binary Trees

School of Electrical Engineering and Computer Science
University of Central Florida

Instructor : Mark Llewellyn
markl@cs.ucf.edu
CC1 211, 823-2790
http://www.cs.ucf.edu/courses/cop3502/spr04

COP 3502: Computer Science I (Note Set #21) Page 2 © Mark Llewellyn

• As we mentioned previously, the run-time of our search
algorithm (also insertion and deletion algorithms) is highly
dependent on the balance of the BST being searched.

• If the data from which a BST is to be built arrives in sorted
order, the resulting tree will be a right skewed tree that will
resemble a linear list. The resulting search time will be
O(n) rather than the O(log2n) that should be expected.

– If the data arrives in reverse sorted order the resulting tree will be
left skewed.

• Since the run-time of our algorithms is dependent on the
structure property of the BST as well as the ordering
property, we need to be sure that the BST is as short and fat
as possible rather than tall and skinny.

The Need to Balance Binary Search Trees

COP 3502: Computer Science I (Note Set #21) Page 3 © Mark Llewellyn

A Right-Skewed Binary Search Tree

26

13

24

28

25

22

20

18

16

COP 3502: Computer Science I (Note Set #21) Page 4 © Mark Llewellyn

A Left-Skewed Binary Search Tree

4

18

8

2

6

10

12

14

16

COP 3502: Computer Science I (Note Set #21) Page 5 © Mark Llewellyn

An Un-balanced Binary Search Tree
26

13

24

29

10

8

28

2522

20

18

16

An unbalanced BST

This tree is also left-skewed.

The number of potential nodes to be
searched for values less than 26 is
9 while the number of potential
nodes to be searched for values
greater than 26 is 2. Height of left
subtree is 7, but height of right
subtree is 3.

COP 3502: Computer Science I (Note Set #21) Page 6 © Mark Llewellyn

• What we need to do is take an un-balanced BST and
balance the tree at each subtree level and maintain the
search tree ordering property in the process.

Balancing Binary Search Trees

13

22

20

18

16

13 22

20

18

16

Un-balanced BST
Balanced BST

transform into

COP 3502: Computer Science I (Note Set #21) Page 7 © Mark Llewellyn

• A binary tree is height balanced (or simply balanced), if the height of
the two subtrees of any node in the tree differs by at most 1. Stated
another way, a binary tree is balanced if the difference in height of the
subtrees of any node is either 0 or 1.

• A binary tree is perfectly balanced if it is balanced and all of the leaf
nodes of the tree are found on one or two levels of the tree.

• For example, a perfectly balanced binary tree consisting of 10,000
nodes, the height of this tree will be log(10,001) = 13.289 = 14. In
practical terms, this means that if 10,000 elements are stored in a
perfectly balanced tree, then at most 14 nodes will need to be checked
to locate a specific element. This is a substantial difference when
compared to the worst case of 10,000 elements in a list! Therefore, in
trees which are to be used primarily for searching, it is worth the effort
to either build the tree so that it is balanced or modify the existing tree
so that it is balanced.

Balancing Binary Search Trees (cont.)

COP 3502: Computer Science I (Note Set #21) Page 8 © Mark Llewellyn

• There are a number of techniques that have been developed to balance
binary trees. Some of the techniques consist of constantly restructuring
the tree when elements arrive and lead to a balanced tree. Some of them
consist of reordering the data and then build the tree according to some
ordering of the data which will ensure that the tree is balanced when it
is constructed.

• As we saw earlier, if the data which is used to construct a BST arrives
in either ascending or descending order the tree will be skewed to the
point of representing a linear list. Thus, if the smallest value in the data
set is the first value read, the root of the tree will contain only a right
subtree. Similarly, if the largest value in the data set is entered first, the
root of the tree will contain only a left subtree. Before looking at more
sophisticated algorithms to balance binary trees, lets examine a very
simple technique to construct a balanced BST.

Balancing Binary Search Trees (cont.)

COP 3502: Computer Science I (Note Set #21) Page 9 © Mark Llewellyn

• When the data arrive, store all of them into an array. Once all the data
have arrived, sort the array using an efficient sorting algorithm.

• Once sorted, the element at the midpoint of the array will become the
root of the BST. The array can now be viewed as consisting of two
subarrays, one to the left of the midpoint and one to the right of the
midpoint.

• The middle element in the left subarray becomes the left child of the
root node and the middle element in the right subarray becomes the
right child of the root.

• This process continues with further subdivision of the original array
until all the elements in the array have been positioned in the BST.

• A slight modification of this would be to completely generate the left
subtree of the root before generating the right subtree of the root. If this
is done, then the very simple recursive procedure shown on the next
slide can be used to generate a balanced BST.

Constructing A Balanced BST

COP 3502: Computer Science I (Note Set #21) Page 10 © Mark Llewellyn

An Algorithm For Constructing A Balanced BST

void balance(int data[], int first, int last) {

if (first <= last) {

int middle = (first + last)/2; //find middle element in the array

insert(data[middle]); //add node to the tree

balance(data, first, middle-1);

balance(data, middle+1, last);

}

}

An example of the execution of this algorithm is shown on the next slide.

COP 3502: Computer Science I (Note Set #21) Page 11 © Mark Llewellyn

Example - Constructing A Balanced BST
Stream of arriving data: 5, 1, 9, 8, 7, 0, 2, 3, 4, 6 Array of sorted data: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Construct left side of BST first.

0 1 2 3 4 5 6 7 8 9(a)

0 1 2 3 4 5 6 7 8 9(b)

Resulting BST: 4

Resulting BST:

0 1 2 3 4 5 6 7 8 9(c) Resulting BST:

4

1

4

1

0 2

COP 3502: Computer Science I (Note Set #21) Page 12 © Mark Llewellyn

Example - Constructing A Balanced BST (cont.)

0 1 2 3 4 5 6 7 8 9(d) Resulting BST: 4

1

0 2

3

After completing this step, the left side
of the BST is completely constructed.

0 1 2 3 4 5 6 7 8 9(e)

Now construct right side of BST

Resulting BST: 4

1

0 2

3

7

COP 3502: Computer Science I (Note Set #21) Page 13 © Mark Llewellyn

Example - Constructing A Balanced BST (cont.)

0 1 2 3 4 5 6 7 8 9(f) Resulting BST: 4

1

0 2

3

7

5 8

0 1 2 3 4 5 6 7 8 9(g)

Final BST: 4

1

0 2

3

7

5 8

6 9

The numbers shown outside of
each node represent the
difference in height of the left
and right subtrees of that node.
Notice that all of these values
are either 0 or 1 indicating that
the tree is balanced. This tree
also happens to be perfectly
balanced.

0

1

1

0 0 0

1 1

0

0

COP 3502: Computer Science I (Note Set #21) Page 14 © Mark Llewellyn

• While the previous algorithm for constructing a balanced binary search
tree is certainly simple, it has one serious drawback: all the data must
be put into an array before the balanced tree can be created.

• This algorithm will not work when the tree must be in use before all of
the data have arrived.

• Can you think of a way to create a balanced tree from an existing
unbalanced tree without requiring the data to be sorted as this algorithm
requires?

– One way to do it would be to read the data from an unbalanced tree into an
array using an inorder traversal of the tree. The unbalanced tree could then
be destroyed and a new one created from the data in the array using the
previous algorithm. In this fashion, no sort is required to put the data into
order!

Problems with the Previous Algorithm

COP 3502: Computer Science I (Note Set #21) Page 15 © Mark Llewellyn

• While the previous algorithm was certainly simple, it was
basically inefficient in that an additional array was required
which typically required sorting before the balanced tree
could be created. To avoid the sorting, required
deconstructing an existing unbalanced tree and
reconstructing the tree, which is quite inefficient except for
very small trees (in which case their unbalanced nature is
probably not a hindrance in any case).

• There are however, several algorithms which require very
little additional storage for intermediate variables and use
no sorting procedure. The DSW algorithm, developed by
Colin Day and later improved by Quentin Stout and Bette
Warren, is a very elegant algorithm which falls into this
category. This is the algorithm we will examine.

Balancing Existing BSTs

COP 3502: Computer Science I (Note Set #21) Page 16 © Mark Llewellyn

• The basic building block for tree transformations in the DSW algorithm
is the rotation.

• There are two types of rotations, left rotations and right rotations, which
are symmetric to one another.

• The rotation of a tree occurs about its root.

• The rotation algorithms that we will look at will use the following
notation to identify nodes in a tree. The node Ch identifies a child node,
the node Par identifies a nodes parent and the node Gr identifies a nodes
grandparent.

• In the rotations that we will examine, a rotation always rotates a child
about its parent. Left children rotate to the right about the parent and
right children rotate to the left about the parent.

Balancing Existing BSTs (cont.)

COP 3502: Computer Science I (Note Set #21) Page 17 © Mark Llewellyn

Right Rotations

Gr

Par

Ch

R

QP

S

Tree before right rotation occurs

Gr

Par

Ch

RQ

P

S

Tree after right rotation

COP 3502: Computer Science I (Note Set #21) Page 18 © Mark Llewellyn

Right Rotation - Example

Tree before right rotation of 16
about 19 occurs

14

1

0 2

19

16 20

1815

17

14

1

0 2 19

16

2018

15

17

Tree after right rotation of 16 about 19
has occurred. Notice that the resulting

tree is still a BST.
Right rotation causes 16 to slide up the
tree to the right and 19 to slide down the

tree to the right.

COP 3502: Computer Science I (Note Set #21) Page 19 © Mark Llewellyn

Right Rotation Algorithm

//rotate Ch about Par, Gr is grandparent of Ch, Par is parent of Ch

rotateRight (Gr, Par, Ch)

if Par is not the root of the tree //i.e., Gr is not null

grandparent Gr of child Ch becomes Ch’s parent by replacing Par;

right subtree of Ch becomes left subtree of Ch’s parent Par;

node Ch acquires Par as its right child;

COP 3502: Computer Science I (Note Set #21) Page 20 © Mark Llewellyn

Left Rotations

Gr

Par

Ch

R

Q P

S

Tree before left rotation occurs

Gr

Par

Ch

R Q

P

S

Tree after left rotation

COP 3502: Computer Science I (Note Set #21) Page 21 © Mark Llewellyn

Left Rotation - Example

Tree before right rotation of 15
about 10 occurs

24

35

4028

10

156

12 18

14

24

35

402810

15

6 12

18

14

Tree after right rotation of 15 about 10
has occurred. Notice that the resulting

tree is still a BST.

Left rotation causes 15 to slide up the tree
to the left and 10 to slide down the tree to

the left.

COP 3502: Computer Science I (Note Set #21) Page 22 © Mark Llewellyn

Left Rotation Algorithm

//rotate Ch about Par, Gr is grandparent of Ch, Par is parent of Ch

rotateLeft (Gr, Par, Ch)

if Par is not the root of the tree //i.e., Gr is not null

grandparent Gr of child Ch becomes Ch’s parent by replacing Par;

left subtree of Ch becomes right subtree of Ch’s parent Par;

node Ch acquires Par as its left child;

COP 3502: Computer Science I (Note Set #21) Page 23 © Mark Llewellyn

• The DSW algorithm is a two-step algorithm which results
in a perfectly balanced tree.

• The first step takes an unbalanced BST and converts the
tree into a backbone (sometimes called a vine). The
backbone is simply an ordered linear list of the nodes that
comprise the BST.

• The second step of the algorithm converts the backbone into
a perfectly balanced tree by performing a series of rotations
about the root of the tree. The total number of rotations that
are performed is a function of the number of nodes in the
tree and the resulting height of a complete tree consisting of
the number of nodes in the tree.

The DSW Algorithm

COP 3502: Computer Science I (Note Set #21) Page 24 © Mark Llewellyn

Step #1 of the DSW Algorithm

Creating the Backbone
//Create a backbone (vine) from an unbalanced BST

createBackbone (root, n)

{

tmp = root;

while (tmp != null)

if tmp has a left child

rotate this child about tmp; //this is a right rotation

set tmp to the child which just became the parent;

else set tmp to its right child;

}

An example illustrating this part of the DSW
algorithm begins on the next page

COP 3502: Computer Science I (Note Set #21) Page 25 © Mark Llewellyn

Creating the Backbone

10

5

23

40

20

3015

25

28

1. Initial unbalanced BST
2. First location of tmp. At this node, tmp

has no left child, so it simply advances
down the tree (to the right).

10

5

23

40

20

3015

25

28

tmp

COP 3502: Computer Science I (Note Set #21) Page 26 © Mark Llewellyn

Creating the Backbone (cont.)

2. Location of tmp at first node with a left
child. The left child of this node is right
rotated about tmp.

10

5

23

40

20

3015

25

28

tmp 10

5

15

20

23

40

30

25

28

4. Backbone after right
rotation of 15 about 20.

COP 3502: Computer Science I (Note Set #21) Page 27 © Mark Llewellyn

Creating the Backbone (cont.)

10

5

15

20

23

40

30

25

28

5. Next location of tmp where a left
child exists.

tmp

10

5

15

20

23

40

30

25

28

6. Backbone after right
rotation of 25 about 30.

COP 3502: Computer Science I (Note Set #21) Page 28 © Mark Llewellyn

Creating the Backbone (cont.)

7. Notice that tmp has not moved and
yet after the previous rotation, still
has a left child so another rotation
about the same node (with value
25 now) occurs.

tmp

10

5

15

20

23

40

30

25

28

10

5

15

20

25

23

40

30

28

8. Tree after rotating 23
about 25.

COP 3502: Computer Science I (Note Set #21) Page 29 © Mark Llewellyn

Creating the Backbone (cont.)

tmp

10

5

15

20

25

23

40

28

30

10. Final backbone.

10

5

15

20

25

23

40

30

28

9. Final location of tmp with
a left child. Will cause
right rotation of 28 about
30.

COP 3502: Computer Science I (Note Set #21) Page 30 © Mark Llewellyn

• Since performing a rotation requires knowledge about the
parent of tmp, an additional reference must be maintained
when the algorithm is implemented.

• In the best case, the tree is already a backbone (i.e., totally
right skewed) and the while loop of the algorithm will
execute n times and no rotations are performed.

• In the worst case, when the root does not have a right child,
the while loop will be executed 2n-1 times and n-1 rotations
will be performed, where n is the number of nodes in the
tree.

• Thus, the run time of the first phase of the DSW algorithm
is O(n).

Analysis of Step 1 of the DSW Algorithm

COP 3502: Computer Science I (Note Set #21) Page 31 © Mark Llewellyn

• In the second phase, the backbone is transformed into a tree, but
this time the tree will be perfectly balanced by having leaves only
on two adjacent levels.

• In each pass down the backbone, every second node is rotated
about its parent.

• One such pass decreases the size of the backbone by one-half.

• Only the first pass may not reach the end of the backbone. It is
used to account for the difference between the number n of nodes
in the current tree and the number 2lg(n+1)-1 of nodes in the
closest complete binary tree. Thus, overflowing nodes are
treated separately.

• The core (step 2) of the DSW algorithm is shown on the next
slide.

Step #2 of the DSW Algorithm

COP 3502: Computer Science I (Note Set #21) Page 32 © Mark Llewellyn

Step #2 of the DSW Algorithm

Creating a Perfectly Balanced BST
createPerfectTree(n)

m = 2lg(n+1) -1; //n is the number of nodes in the backbone

//perform initial rotations – these are left rotations

make n-m rotations starting from the top of the backbone;

//perform remainder of necessary left rotations

while (m > 1)

m = m/2;

make m rotations starting from the top of the backbone;

An example illustrating the second part of the DSW
algorithm begins on the next page

COP 3502: Computer Science I (Note Set #21) Page 33 © Mark Llewellyn

Creating the BST From the Backbone

40

10

5

15

20

25

23

28

30

1. Initial backbone.
Value of n is 9. Value
of m is 7 since,
2lg(n+1) -1 =
2lg(9+1) -1 =
23-1 = 7. Thus,
n-m = 9-7 = 2, so 2
initial rotations are
made.

10

5

15

20

25

23

28

30
2. BST/backbone after

first two (n-m) initial
rotations are
completed.

40

COP 3502: Computer Science I (Note Set #21) Page 34 © Mark Llewellyn

Creating the BST From the Backbone (cont.)

10

5

15

20

25

23

28

30
3. Initially the value of m is

7. Upon entering the
while loop the value of
m is reset to 3 (7/2 = 3).
So 3 more rotations are
made. These rotated
nodes are highlighted.

40

10

5 15

20

25

23

28

30

4. After performing the first
of the three rotations
indicated in step 3.
Rotation of 20 about 10.

40

COP 3502: Computer Science I (Note Set #21) Page 35 © Mark Llewellyn

Creating the BST From the Backbone (cont.)

6. After performing the
third of the three
rotations indicated in
step 3. Rotation of 30
about 28.

10

5 15

20

25

23 28

30

5. After performing the
second of the three
rotations indicated in
step 3. Rotation of 25
about 23.

40

10

5 15

20

25

23

28

30

40

COP 3502: Computer Science I (Note Set #21) Page 36 © Mark Llewellyn

Creating the BST From the Backbone (cont.)

8. After performing the last
rotation of 25 about 20.
The resulting BST is
perfectly balanced.

10

5 15

20

25

23 28

30

40

10

5 15

20

25

23

28

30

40

7. Re-entering the while
loop again resets the
value of m from 3 to 1
(3/2 = 1). So one more
rotation is performed.
Rotating 25 about 20.

COP 3502: Computer Science I (Note Set #21) Page 37 © Mark Llewellyn

• To compute the complexity of the tree building phase, note
that the number of iterations performed by the while loop
equals:

• The number of rotations can now be given by the
expression:

• Thus, the number of rotations is O(n). Because creating a
backbone also required at most O(n) rotations, the cost of
global rebalancing with the DSW algorithm is optimal in
terms of time because it grows linearly with n and requires
a very small and fixed amount of storage.

Analysis of Step 2 of the DSW Algorithm

())lg()()
)lg(

)lg(1mm121371512
11m

1i

i11m +−=−=+++++− ∑
−+

=

−+ L

()  )lg(lg())lg(1nn1mn1mmmn +−=+−=+−+−

