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A Closer Look at the Inorder Traversal

A

B C

D E

F G

• The inorder traversal of the tree on

the left is:

B, A, F, D, G, C, E

• Notice that before “visiting” the root

of any subtree we’ve proceeded as far

down the left subtree as possible.

• This is called a depth-first traversal.

• The preorder and postorder traversals

are also depth-first traversals, in that 

one subtree is explored to its logical

end before any nodes in the other

subtree are ever visited.
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• For binary trees, the most common form of traversal is one 
of the depth-first traversals.

• Depending on the application, the preorder, inorder, and 
postorder traversals are equally useful.

• It is also possible to traverse a binary tree using a level-
order traversal.  In a level-order traversal, all of the nodes 
on a given level of the tree are visited before any node on 
the next deeper (closer to the leaves) level is visited.

• A level-order traversal of the tree shown on page 2 would 
be:  A, B, C, D, E, F, G.  We’ll examine level-order 
traversals in more detail later.

A Closer Look at the Inorder Traversal (cont.)
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• Preorder traversals are useful in tree cloning operations, 
because you encounter the root node of a subtree prior to 
traversing the children, so the structure of the tree is easy 
to recreate.

• Inorder traversals are most useful in binary search tree 
applications.  For example, given a binary search tree 
(we’ll see the definition of such a tree shortly), an inorder 
traversal of the search tree will print the values in the 
nodes in ascending order.

• Postorder traversals are most common with expression 
trees.  A postorder traversal of an expression tree produces 
the postfix form of an infix expression.  Postorder 
traversals are also used for expression evaluation.  We’ll 
look at this application next.

Traversal Applications
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• When we dealt with stacks, we saw an algorithm that 
converted an infix expression into its postfix representation 
using a stack.  We saw that the postfix form of the 
expression was easier to evaluate than its infix form since 
every operation was immediately preceded by its operands.

• An arithmetic expression is often represented by a binary 
tree.  Such a binary tree is known as an expression tree.

• An expression tree is a binary tree representing an 
arithmetic expression where the external nodes (leaf nodes) 
of the tree represent variables or constants (the operands) 
and the internal nodes (non-leaf nodes) represent the 
operations.

Applications for Binary Trees: Expression Trees
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• Each node in an expression tree has a value associated with 
it:

– If the node is a leaf node (external node), then its value is that of its 
corresponding variable or constant.

– If the node is an internal node (non-leaf node), then its value is 
defined by applying its corresponding operation to the values of its 
children.

• In a binary tree, if every node in the tree has either 0 or 2 
children the tree is a proper binary tree, otherwise it is 
considered an improper binary tree.  For expressions which 
involve only binary operations, the expression tree will be 
proper.  However, if unary plus/minus operations appear in 
the expression, the corresponding expression tree will be 
improper.

Expression Trees
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Expression Trees (cont.)

?

/ +

? + ?

??+ 3

3 1 9 5

2 3

6

47

Expression tree for:  ( ( ( ( 3 + 1) ? 3 ) / ( ( 9 – 5 ) + 2 ) ) – ( ( 3 ? ( 7  – 4 ) ) + 6 ) )
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Expression Trees (cont.)

?

/ +

? + ?

??+ 3

3 1 9 5

2 3

6

47

Expression tree for:  ( ( ( ( 3 + 1) ? 3 ) / ( ( 9 – 5 ) + 2 ) ) – ( ( 3 ? ( 7  – 4 ) ) + 6 ) )

Node value 
= 4

Node value 
= 12

Node value 
= 4

Node value 
= 6

Node value 
= 2

Node value 
= 3

Node value 
= 9

Node value 
= 15

Node value = ?13

Value of the expression
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Expression Trees (cont.)

?

/ +

? + ?

??+ 3

3 1 9 5

2 3

6

47

An inorder traversal of this tree give:

3 + 1 ? 3 / 9 – 5 + 2 – 3 ? 7 – 4 + 6, which except for the parenthesis is equal to:

( ( ( ( 3 + 1) ? 3 ) / ( ( 9 – 5 ) + 2 ) ) – ( ( 3 ? ( 7  – 4 ) ) + 6 ) )
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Expression Trees (cont.)
?

/ +

? + ?

??+ 3

3 1 9 5

2 3

6

47

The expression: ( ( ( ( 3 + 1) ? 3 ) / ( ( 9 – 5 ) + 2 ) ) – ( ( 3 ? ( 7  – 4 ) ) + 6 ) )

converted to postfix notation is: 3  1  +  3  ? 9  5  – 2  +  /  3  7  4  – ? 6  + –

A postorder traversal of the tree also produces: 3  1  +  3  ? 9  5  – 2  +  /  3  7  4  – ? 6  +  –
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• It is easy using a binary tree to convert an infix expression into its 
postfix form by simply performing a postorder traversal of the tree 
corresponding to the infix expression.

• Now what we need is an algorithm for converting an infix expression 
into an expression tree.

• It turns out that this is not a hard algorithm to develop.  Consider the 
infix expression that we have been using: 

( ( ( ( 3 + 1) ? 3 ) / ( ( 9 – 5 ) + 2 ) ) – ( ( 3 ? ( 7  – 4 ) ) + 6 ) )

The tree is built from the bottom-up by “parsing” the fully 
parenthesized infix expression from left-to-right.  Basically, the 
algorithm maintains a forest of trees via a stack.  Although it is not 
crucial to understand how an expression tree is constructed (at least at 
this point in time – eventually you will learn the complete algorithm), I 
wanted to show you the basics of the construction process.  This is 
shown on the next page.

Expression Trees (cont.)



COP 3502: Computer Science I  (Note Set #18)              Page 12 © Mark Llewellyn

• A tree node is created for every operand and operator encountered in 
the infix expression.  A pointer is maintained to each of these nodes.

1. Push all open parentheses onto the stack.

2. Each time and operand or operator is encountered, create a node and 
push its pointer onto the stack.

3. For each right parenthesis that is encountered do the following: pop 
the pointer to the right operand, pop the pointer to the operator, pop 
the pointer to the left operand, and pop the open parenthesis which is 
now on the top of the stack.  Set the left child of the operator node to 
the left operand and the right child of the operator node to the right 
operand and push the pointer to the operator node onto the stack.

4. Repeat steps 1 through 3 until the entire expression has been 
scanned.

Expression Trees (cont.)
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Expression Trees (cont.)

(

(

(

(

ptr1(3)

ptr2 (+)

ptr3 (1)top

stack

+

3

1

ptr1

ptr3

ptr2

Stack and pointers just before 
encountering first close parenthesis

Here

The infix expression:   ( ( ( ( 3 + 1) ? 3 ) / ( ( 9 – 5 ) + 2 ) ) – ( ( 3 ? ( 7  – 4 ) ) + 6 ) )

3 1

+ptr2

(

(

(

ptr2 (+)top

stack

Stack and pointers just after 
encountering first close parenthesis

Here
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Expression Trees (cont.)

(

(

ptr4 (?)top

stack

Stack and pointers just after 
encountering second close 

parenthesis

Here

The infix expression:   ( ( ( ( 3 + 1) ? 3 ) / ( ( 9 – 5 ) + 2 ) ) – ( ( 3 ? ( 7  – 4 ) ) + 6 ) )

(

(

(

ptr2 (+)

ptr4 (?)

ptr5 (3)

stack 3 1

+ptr2

top

Stack and pointers just before 
encountering second close 

parenthesis

Here

ptr4 ?

ptr5 3

3 1

+ptr2 3

?ptr4
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The infix expression:   ( ( ( ( 3 + 1) ? 3 ) / ( ( 9 – 5 ) + 2 ) ) – ( ( 3 ? ( 7  – 4 ) ) + 6 ) )

Stack and pointers just after encountering 
third close parenthesis

Here

(

(

ptr4 (?)

ptr6 (/)

(

ptr8 (– )

stack 3 1

+ptr2 3

?ptr4

59

–ptr8 –ptr8

top

Stack and pointers just after encountering 
fourth close parenthesis

Here

3 1

+ptr2 3

?ptr4

59

(

ptr4 (?)

ptr6 (/)

ptr10 (+)

stack

ptr10 +

2

top
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The infix expression:   ( ( ( ( 3 + 1) ? 3 ) / ( ( 9 – 5 ) + 2 ) ) – ( ( 3 ? ( 7  – 4 ) ) + 6 ) )

top

Stack and pointers just after encountering 
fifth close parenthesis

Here

3 1

+ptr2 3

?ptr4

(

ptr6 (/)

stack

–ptr8

59

ptr10 +

2

/ptr6
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The infix expression:   ( ( ( ( 3 + 1) ? 3 ) / ( ( 9 – 5 ) + 2 ) ) – ( ( 3 ? ( 7  – 4 ) ) + 6 ) )

top

Stack and pointers just before encountering 
ninth open parenthesis

Here

(

ptr6 (/)

ptr12 (–)

( 

(

ptr13 (3)

stack

ptr14 (?)

3 1

+ptr2 3

?ptr4

–ptr8

59

ptr10 +

2

/ptr6

ptr12 –3ptr13

?ptr14
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The infix expression:   ( ( ( ( 3 + 1) ? 3 ) / ( ( 9 – 5 ) + 2 ) ) – ( ( 3 ? ( 7  – 4 ) ) + 6 ) )

top

Stack and pointers just before encountering 
seventh close parenthesis

Here

(

ptr6 (/)

ptr12 (–)

( 

(

ptr13 (3)

stack

ptr14 (?)

ptr16 (–)

3 1

+ptr2 3

?ptr4

–ptr8

59

ptr10 +

2

/ptr6

ptr12 –

7 4

–ptr16

?ptr14

3ptr13
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The infix expression:   ( ( ( ( 3 + 1) ? 3 ) / ( ( 9 – 5 ) + 2 ) ) – ( ( 3 ? ( 7  – 4 ) ) + 6 ) )

Stack and pointers just after encountering 
seventh close parenthesis

Here

top

(

ptr6 (/)

ptr12 (–)

( 

stack

ptr14 (?)

3 1

+ptr2 3

?ptr4

–ptr8

59

ptr10 +

2

/ptr6

ptr12 –

7 4

–ptr16

?ptr14

3ptr13
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The infix expression:   ( ( ( ( 3 + 1) ? 3 ) / ( ( 9 – 5 ) + 2 ) ) – ( ( 3 ? ( 7  – 4 ) ) + 6 ) )

Stack and pointers just before encountering next to last 
close parenthesis

Here

top

(

ptr6 (/)

ptr12 (–)

( 

ptr14 (?)

ptr18 (+)

stack

ptr19 (6)

3 1

+ptr2 3

?ptr4

–ptr8

59

ptr10 +

2

/ptr6

ptr12 –

7 4

–ptr16

?ptr14

3ptr13

ptr18 +

6ptr19
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The infix expression:   ( ( ( ( 3 + 1) ? 3 ) / ( ( 9 – 5 ) + 2 ) ) – ( ( 3 ? ( 7  – 4 ) ) + 6 ) )

Stack and pointers just before encountering last close 
parenthesis

Here

top

(

ptr6 (/)

ptr12 (–)

ptr18 (+)

stack

3 1

+ptr2 3

?ptr4

–ptr8

59

ptr10 +

2

/ptr6

ptr12 –

7 4

–ptr16

?ptr14

3ptr13

ptr18 +

6
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The infix expression:   ( ( ( ( 3 + 1) ? 3 ) / ( ( 9 – 5 ) + 2 ) ) – ( ( 3 ? ( 7  – 4 ) ) + 6 ) )

Stack and pointers just after encountering last close 
parenthesis

Here

top

3 1

+ptr2 3

?ptr4

–ptr8

59

ptr10 +

2

/ptr6

ptr12 –

7 4

–ptr16

?ptr14

3ptr13

ptr18 +

6

ptr12 (–)

stack
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• A binary search tree is a binary tree that is either empty 
or each node of the tree contains a data value which 
satisfies the following:

1. All of the data values in the left subtree of each node are smaller 
than the data value in the node (root of the subtree) itself.  
(Stated another way, the value of the node itself is larger than
the value of every node in its left subtree.)

2. All of the data values in the right subtree of each node are larger 
than the data value in the node (root of the subtree) itself.  
(Stated another way, the value of the node itself is smaller than 
the value of every node in its right subtree.)

3. Both the left and right subtrees of the node are themselves 
binary search trees.

Binary Search Trees
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Binary Search Trees (cont.)

44

24

20

8 19

2815

30 42

36

40

65

56

62

6458

88

A Binary Search Tree
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• A binary search tree, commonly referred to as a BST, is 
extremely useful for efficient searching.  Basically, a 
BST amounts to embedding the binary search into the 
data structure itself.

• Notice how the root of every subtree in the BST on the 
previous page is the root of a BST.  

• Clearly, the search tree ordering property means that 
insertions into a BST are not placed at some arbitrary 
point in the tree.

• Before we look at an algorithm to insert into a BST, let’s 
see what steps need to occur to handle an insertion.

Binary Search Trees (cont.)
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• Let’s suppose we insert the data values, 10, 14, 6, 2, 5, 
15, and 17 in their order of appearance, into an initially 
empty BST.

Insertion Into A Binary Search Tree

10Step 1:  Create new node with value 10.

Step 2:  Create new node with value 14.  This 
new node belongs in the right subtree of node 
10 since 14 > 10.  The right subtree of node 
10 is empty so, node 14 becomes a right child 
of node 10.

10

14

Step 3:  Create new node with value 6.  This 
new node belongs in the left subtree of node 
10 since 6 < 10.  The left subtree of node 10 
is empty so, node 6 becomes the left child of 
node 10.

10

146
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Insertion Into A Binary Search Tree (cont.)

Step 5:  Create new node with value 5.  This 
new node belongs in the left subtree of node 
10 since 10 > 5.  The root of the left subtree 
of node 10 has value 6, so the new node 
belongs in the left subtree of node 6.  The root 
of the left subtree of 6 has value 2.  The new 
node belongs in the  right subtree of 2 which 
is empty, so the new node with value 5 
becomes the right child of node 2.

Step 4:  Create new node with value 2.  This 
new node belongs in the left subtree of node 
10 since 2 < 10.  The root of the left subtree 
of node 10 has value 6.  The new node 
belongs in the left subtree of node 6 since 2 < 
6. The left subtree of node 6 is empty so, 
node 2 becomes the left child of node 6.

10

146

2

10

146

2

5
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Insertion Into A Binary Search Tree (cont.)

Step 7:  Create new node with value 17.  This 
new node belongs in the right subtree of node 
10 since 10 < 17.  The root of the right 
subtree of node 10 has value 14, so the new 
node belongs in the right subtree of node 14.  
The root of the right subtree of 14 has value 
15.  The new node belongs in the  right 
subtree of 15 which is empty, so the new 
node with value 17 becomes the right child of 
node 15.

Step 6:  Create new node with value 15.  This 
new node belongs in the right subtree of node 
10 since 15 > 10.  The root of the right 
subtree of node 10 has value 14.  The new 
node belongs in the rightt subtree of node 14 
since 14 < 15. The right subtree of node 14 is 
empty so, node 15 becomes the right child of 
node 14.

10

146

2

10

146

2

5

15

15

17
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• This ordering of the nodes is an ordering property and 
not a structure property of the tree.  This means that 
depending on how the BST is constructed it is possible 
for the tree to become skewed to either the right or left.  
In other words, either the right or left subtree of the root 
node is considerably deeper than the other side.

Binary Search Trees (cont.)


