
COP 3502: Computer Science I (Note Set #18) Page 1 © Mark Llewellyn

COP 3502: Computer Science I
Spring 2004

– Note Set 18 –
Binary Trees – Part 2

School of Electrical Engineering and Computer Science
University of Central Florida

Instructor : Mark Llewellyn
markl@cs.ucf.edu
CC1 211, 823-2790
http://www.cs.ucf.edu/courses/cop3502/spr04

COP 3502: Computer Science I (Note Set #18) Page 2 © Mark Llewellyn

A Closer Look at the Inorder Traversal

A

B C

D E

F G

• The inorder traversal of the tree on

the left is:

B, A, F, D, G, C, E

• Notice that before “visiting” the root

of any subtree we’ve proceeded as far

down the left subtree as possible.

• This is called a depth-first traversal.

• The preorder and postorder traversals

are also depth-first traversals, in that

one subtree is explored to its logical

end before any nodes in the other

subtree are ever visited.

COP 3502: Computer Science I (Note Set #18) Page 3 © Mark Llewellyn

• For binary trees, the most common form of traversal is one
of the depth-first traversals.

• Depending on the application, the preorder, inorder, and
postorder traversals are equally useful.

• It is also possible to traverse a binary tree using a level-
order traversal. In a level-order traversal, all of the nodes
on a given level of the tree are visited before any node on
the next deeper (closer to the leaves) level is visited.

• A level-order traversal of the tree shown on page 2 would
be: A, B, C, D, E, F, G. We’ll examine level-order
traversals in more detail later.

A Closer Look at the Inorder Traversal (cont.)

COP 3502: Computer Science I (Note Set #18) Page 4 © Mark Llewellyn

• Preorder traversals are useful in tree cloning operations,
because you encounter the root node of a subtree prior to
traversing the children, so the structure of the tree is easy
to recreate.

• Inorder traversals are most useful in binary search tree
applications. For example, given a binary search tree
(we’ll see the definition of such a tree shortly), an inorder
traversal of the search tree will print the values in the
nodes in ascending order.

• Postorder traversals are most common with expression
trees. A postorder traversal of an expression tree produces
the postfix form of an infix expression. Postorder
traversals are also used for expression evaluation. We’ll
look at this application next.

Traversal Applications

COP 3502: Computer Science I (Note Set #18) Page 5 © Mark Llewellyn

• When we dealt with stacks, we saw an algorithm that
converted an infix expression into its postfix representation
using a stack. We saw that the postfix form of the
expression was easier to evaluate than its infix form since
every operation was immediately preceded by its operands.

• An arithmetic expression is often represented by a binary
tree. Such a binary tree is known as an expression tree.

• An expression tree is a binary tree representing an
arithmetic expression where the external nodes (leaf nodes)
of the tree represent variables or constants (the operands)
and the internal nodes (non-leaf nodes) represent the
operations.

Applications for Binary Trees: Expression Trees

COP 3502: Computer Science I (Note Set #18) Page 6 © Mark Llewellyn

• Each node in an expression tree has a value associated with
it:

– If the node is a leaf node (external node), then its value is that of its
corresponding variable or constant.

– If the node is an internal node (non-leaf node), then its value is
defined by applying its corresponding operation to the values of its
children.

• In a binary tree, if every node in the tree has either 0 or 2
children the tree is a proper binary tree, otherwise it is
considered an improper binary tree. For expressions which
involve only binary operations, the expression tree will be
proper. However, if unary plus/minus operations appear in
the expression, the corresponding expression tree will be
improper.

Expression Trees

COP 3502: Computer Science I (Note Set #18) Page 7 © Mark Llewellyn

Expression Trees (cont.)

?

/ +

? + ?

??+ 3

3 1 9 5

2 3

6

47

Expression tree for: ((((3 + 1) ? 3) / ((9 – 5) + 2)) – ((3 ? (7 – 4)) + 6))

COP 3502: Computer Science I (Note Set #18) Page 8 © Mark Llewellyn

Expression Trees (cont.)

?

/ +

? + ?

??+ 3

3 1 9 5

2 3

6

47

Expression tree for: ((((3 + 1) ? 3) / ((9 – 5) + 2)) – ((3 ? (7 – 4)) + 6))

Node value
= 4

Node value
= 12

Node value
= 4

Node value
= 6

Node value
= 2

Node value
= 3

Node value
= 9

Node value
= 15

Node value = ?13

Value of the expression

COP 3502: Computer Science I (Note Set #18) Page 9 © Mark Llewellyn

Expression Trees (cont.)

?

/ +

? + ?

??+ 3

3 1 9 5

2 3

6

47

An inorder traversal of this tree give:

3 + 1 ? 3 / 9 – 5 + 2 – 3 ? 7 – 4 + 6, which except for the parenthesis is equal to:

((((3 + 1) ? 3) / ((9 – 5) + 2)) – ((3 ? (7 – 4)) + 6))

COP 3502: Computer Science I (Note Set #18) Page 10 © Mark Llewellyn

Expression Trees (cont.)
?

/ +

? + ?

??+ 3

3 1 9 5

2 3

6

47

The expression: ((((3 + 1) ? 3) / ((9 – 5) + 2)) – ((3 ? (7 – 4)) + 6))

converted to postfix notation is: 3 1 + 3 ? 9 5 – 2 + / 3 7 4 – ? 6 + –

A postorder traversal of the tree also produces: 3 1 + 3 ? 9 5 – 2 + / 3 7 4 – ? 6 + –

COP 3502: Computer Science I (Note Set #18) Page 11 © Mark Llewellyn

• It is easy using a binary tree to convert an infix expression into its
postfix form by simply performing a postorder traversal of the tree
corresponding to the infix expression.

• Now what we need is an algorithm for converting an infix expression
into an expression tree.

• It turns out that this is not a hard algorithm to develop. Consider the
infix expression that we have been using:

((((3 + 1) ? 3) / ((9 – 5) + 2)) – ((3 ? (7 – 4)) + 6))

The tree is built from the bottom-up by “parsing” the fully
parenthesized infix expression from left-to-right. Basically, the
algorithm maintains a forest of trees via a stack. Although it is not
crucial to understand how an expression tree is constructed (at least at
this point in time – eventually you will learn the complete algorithm), I
wanted to show you the basics of the construction process. This is
shown on the next page.

Expression Trees (cont.)

COP 3502: Computer Science I (Note Set #18) Page 12 © Mark Llewellyn

• A tree node is created for every operand and operator encountered in
the infix expression. A pointer is maintained to each of these nodes.

1. Push all open parentheses onto the stack.

2. Each time and operand or operator is encountered, create a node and
push its pointer onto the stack.

3. For each right parenthesis that is encountered do the following: pop
the pointer to the right operand, pop the pointer to the operator, pop
the pointer to the left operand, and pop the open parenthesis which is
now on the top of the stack. Set the left child of the operator node to
the left operand and the right child of the operator node to the right
operand and push the pointer to the operator node onto the stack.

4. Repeat steps 1 through 3 until the entire expression has been
scanned.

Expression Trees (cont.)

COP 3502: Computer Science I (Note Set #18) Page 13 © Mark Llewellyn

Expression Trees (cont.)

(

(

(

(

ptr1(3)

ptr2 (+)

ptr3 (1)top

stack

+

3

1

ptr1

ptr3

ptr2

Stack and pointers just before
encountering first close parenthesis

Here

The infix expression: ((((3 + 1) ? 3) / ((9 – 5) + 2)) – ((3 ? (7 – 4)) + 6))

3 1

+ptr2

(

(

(

ptr2 (+)top

stack

Stack and pointers just after
encountering first close parenthesis

Here

COP 3502: Computer Science I (Note Set #18) Page 14 © Mark Llewellyn

Expression Trees (cont.)

(

(

ptr4 (?)top

stack

Stack and pointers just after
encountering second close

parenthesis

Here

The infix expression: ((((3 + 1) ? 3) / ((9 – 5) + 2)) – ((3 ? (7 – 4)) + 6))

(

(

(

ptr2 (+)

ptr4 (?)

ptr5 (3)

stack 3 1

+ptr2

top

Stack and pointers just before
encountering second close

parenthesis

Here

ptr4 ?

ptr5 3

3 1

+ptr2 3

?ptr4

COP 3502: Computer Science I (Note Set #18) Page 15 © Mark Llewellyn

The infix expression: ((((3 + 1) ? 3) / ((9 – 5) + 2)) – ((3 ? (7 – 4)) + 6))

Stack and pointers just after encountering
third close parenthesis

Here

(

(

ptr4 (?)

ptr6 (/)

(

ptr8 (–)

stack 3 1

+ptr2 3

?ptr4

59

–ptr8 –ptr8

top

Stack and pointers just after encountering
fourth close parenthesis

Here

3 1

+ptr2 3

?ptr4

59

(

ptr4 (?)

ptr6 (/)

ptr10 (+)

stack

ptr10 +

2

top

COP 3502: Computer Science I (Note Set #18) Page 16 © Mark Llewellyn

The infix expression: ((((3 + 1) ? 3) / ((9 – 5) + 2)) – ((3 ? (7 – 4)) + 6))

top

Stack and pointers just after encountering
fifth close parenthesis

Here

3 1

+ptr2 3

?ptr4

(

ptr6 (/)

stack

–ptr8

59

ptr10 +

2

/ptr6

COP 3502: Computer Science I (Note Set #18) Page 17 © Mark Llewellyn

The infix expression: ((((3 + 1) ? 3) / ((9 – 5) + 2)) – ((3 ? (7 – 4)) + 6))

top

Stack and pointers just before encountering
ninth open parenthesis

Here

(

ptr6 (/)

ptr12 (–)

(

(

ptr13 (3)

stack

ptr14 (?)

3 1

+ptr2 3

?ptr4

–ptr8

59

ptr10 +

2

/ptr6

ptr12 –3ptr13

?ptr14

COP 3502: Computer Science I (Note Set #18) Page 18 © Mark Llewellyn

The infix expression: ((((3 + 1) ? 3) / ((9 – 5) + 2)) – ((3 ? (7 – 4)) + 6))

top

Stack and pointers just before encountering
seventh close parenthesis

Here

(

ptr6 (/)

ptr12 (–)

(

(

ptr13 (3)

stack

ptr14 (?)

ptr16 (–)

3 1

+ptr2 3

?ptr4

–ptr8

59

ptr10 +

2

/ptr6

ptr12 –

7 4

–ptr16

?ptr14

3ptr13

COP 3502: Computer Science I (Note Set #18) Page 19 © Mark Llewellyn

The infix expression: ((((3 + 1) ? 3) / ((9 – 5) + 2)) – ((3 ? (7 – 4)) + 6))

Stack and pointers just after encountering
seventh close parenthesis

Here

top

(

ptr6 (/)

ptr12 (–)

(

stack

ptr14 (?)

3 1

+ptr2 3

?ptr4

–ptr8

59

ptr10 +

2

/ptr6

ptr12 –

7 4

–ptr16

?ptr14

3ptr13

COP 3502: Computer Science I (Note Set #18) Page 20 © Mark Llewellyn

The infix expression: ((((3 + 1) ? 3) / ((9 – 5) + 2)) – ((3 ? (7 – 4)) + 6))

Stack and pointers just before encountering next to last
close parenthesis

Here

top

(

ptr6 (/)

ptr12 (–)

(

ptr14 (?)

ptr18 (+)

stack

ptr19 (6)

3 1

+ptr2 3

?ptr4

–ptr8

59

ptr10 +

2

/ptr6

ptr12 –

7 4

–ptr16

?ptr14

3ptr13

ptr18 +

6ptr19

COP 3502: Computer Science I (Note Set #18) Page 21 © Mark Llewellyn

The infix expression: ((((3 + 1) ? 3) / ((9 – 5) + 2)) – ((3 ? (7 – 4)) + 6))

Stack and pointers just before encountering last close
parenthesis

Here

top

(

ptr6 (/)

ptr12 (–)

ptr18 (+)

stack

3 1

+ptr2 3

?ptr4

–ptr8

59

ptr10 +

2

/ptr6

ptr12 –

7 4

–ptr16

?ptr14

3ptr13

ptr18 +

6

COP 3502: Computer Science I (Note Set #18) Page 22 © Mark Llewellyn

The infix expression: ((((3 + 1) ? 3) / ((9 – 5) + 2)) – ((3 ? (7 – 4)) + 6))

Stack and pointers just after encountering last close
parenthesis

Here

top

3 1

+ptr2 3

?ptr4

–ptr8

59

ptr10 +

2

/ptr6

ptr12 –

7 4

–ptr16

?ptr14

3ptr13

ptr18 +

6

ptr12 (–)

stack

COP 3502: Computer Science I (Note Set #18) Page 23 © Mark Llewellyn

• A binary search tree is a binary tree that is either empty
or each node of the tree contains a data value which
satisfies the following:

1. All of the data values in the left subtree of each node are smaller
than the data value in the node (root of the subtree) itself.
(Stated another way, the value of the node itself is larger than
the value of every node in its left subtree.)

2. All of the data values in the right subtree of each node are larger
than the data value in the node (root of the subtree) itself.
(Stated another way, the value of the node itself is smaller than
the value of every node in its right subtree.)

3. Both the left and right subtrees of the node are themselves
binary search trees.

Binary Search Trees

COP 3502: Computer Science I (Note Set #18) Page 24 © Mark Llewellyn

Binary Search Trees (cont.)

44

24

20

8 19

2815

30 42

36

40

65

56

62

6458

88

A Binary Search Tree

COP 3502: Computer Science I (Note Set #18) Page 25 © Mark Llewellyn

• A binary search tree, commonly referred to as a BST, is
extremely useful for efficient searching. Basically, a
BST amounts to embedding the binary search into the
data structure itself.

• Notice how the root of every subtree in the BST on the
previous page is the root of a BST.

• Clearly, the search tree ordering property means that
insertions into a BST are not placed at some arbitrary
point in the tree.

• Before we look at an algorithm to insert into a BST, let’s
see what steps need to occur to handle an insertion.

Binary Search Trees (cont.)

COP 3502: Computer Science I (Note Set #18) Page 26 © Mark Llewellyn

• Let’s suppose we insert the data values, 10, 14, 6, 2, 5,
15, and 17 in their order of appearance, into an initially
empty BST.

Insertion Into A Binary Search Tree

10Step 1: Create new node with value 10.

Step 2: Create new node with value 14. This
new node belongs in the right subtree of node
10 since 14 > 10. The right subtree of node
10 is empty so, node 14 becomes a right child
of node 10.

10

14

Step 3: Create new node with value 6. This
new node belongs in the left subtree of node
10 since 6 < 10. The left subtree of node 10
is empty so, node 6 becomes the left child of
node 10.

10

146

COP 3502: Computer Science I (Note Set #18) Page 27 © Mark Llewellyn

Insertion Into A Binary Search Tree (cont.)

Step 5: Create new node with value 5. This
new node belongs in the left subtree of node
10 since 10 > 5. The root of the left subtree
of node 10 has value 6, so the new node
belongs in the left subtree of node 6. The root
of the left subtree of 6 has value 2. The new
node belongs in the right subtree of 2 which
is empty, so the new node with value 5
becomes the right child of node 2.

Step 4: Create new node with value 2. This
new node belongs in the left subtree of node
10 since 2 < 10. The root of the left subtree
of node 10 has value 6. The new node
belongs in the left subtree of node 6 since 2 <
6. The left subtree of node 6 is empty so,
node 2 becomes the left child of node 6.

10

146

2

10

146

2

5

COP 3502: Computer Science I (Note Set #18) Page 28 © Mark Llewellyn

Insertion Into A Binary Search Tree (cont.)

Step 7: Create new node with value 17. This
new node belongs in the right subtree of node
10 since 10 < 17. The root of the right
subtree of node 10 has value 14, so the new
node belongs in the right subtree of node 14.
The root of the right subtree of 14 has value
15. The new node belongs in the right
subtree of 15 which is empty, so the new
node with value 17 becomes the right child of
node 15.

Step 6: Create new node with value 15. This
new node belongs in the right subtree of node
10 since 15 > 10. The root of the right
subtree of node 10 has value 14. The new
node belongs in the rightt subtree of node 14
since 14 < 15. The right subtree of node 14 is
empty so, node 15 becomes the right child of
node 14.

10

146

2

10

146

2

5

15

15

17

COP 3502: Computer Science I (Note Set #18) Page 29 © Mark Llewellyn

• This ordering of the nodes is an ordering property and
not a structure property of the tree. This means that
depending on how the BST is constructed it is possible
for the tree to become skewed to either the right or left.
In other words, either the right or left subtree of the root
node is considerably deeper than the other side.

Binary Search Trees (cont.)

