
COP 3502: Computer Science I (Note Set #17) Page 1 © Mark Llewellyn

COP 3502: Computer Science I
Spring 2004

– Note Set 17 –
Binary Trees

School of Electrical Engineering and Computer Science
University of Central Florida

Instructor : Mark Llewellyn
markl@cs.ucf.edu
CC1 211, 823-2790
http://www.cs.ucf.edu/courses/cop3502/spr04

COP 3502: Computer Science I (Note Set #17) Page 2 © Mark Llewellyn

Linked List Implementation of a Queue

// MJL – 3/16/2004
// A small queue implementation
#include <stdio.h>

// Struct used to form a queue of integers.
struct queue {

int data;
struct queue *next;

};

// Prototypes
int enqueue(struct queue **rear, int num);
struct queue* dequeue(struct queue **front);
int empty(struct queue *front);
void init(struct queue **front, struct queue **rear);

COP 3502: Computer Science I (Note Set #17) Page 3 © Mark Llewellyn

Linked List Implementation of a Queue (cont.)

int main() {

struct queue *queue1, *temp;
int tempval;

init(&queue1);

if (!enqueue(&queue1, 3))
printf(“Enqueue failed.\n");

if (!enqueue(&queue1, 5))
printf(“Enqueue failed.\n");

temp = dequeue(&queue1);
if (temp !=NULL)
printf(“Dequeue = %d\n", temp->data);

COP 3502: Computer Science I (Note Set #17) Page 4 © Mark Llewellyn

Linked List Implementation of a Queue (cont.)

if (empty(queue1))
printf("Empty queue\n");

else
printf("Contains elements.\n");

temp = dequeue(&queue1);
temp = dequeue(&queue1);
return 0;

}
void init(struct queue **front, **rear) {

*front = NULL;
*rear = NULL;

}

COP 3502: Computer Science I (Note Set #17) Page 5 © Mark Llewellyn

Linked List Implementation of a Queue (cont.)
// Pre-condition: rear points to the tail of the queue.
// Post-condition: a new node storing num will be added to the queue
// if memory is available. In this case a 1 is returned. If no memory is found,
// no enqueue is executed and a 0 is returned.

int enqueue(struct queue **rear, int num) {

struct queue *temp;
// Create temp node and link it to the rear of the queue.
temp = (struct queue *)malloc(sizeof(struct queue));

if (temp != NULL) {
temp->data = num;
temp->next = NULL;
*rear->next = temp;
*rear = temp;
return 1;

}
else

return 0;
}

COP 3502: Computer Science I (Note Set #17) Page 6 © Mark Llewellyn

Linked List Implementation of a Queue (cont.)

// Pre-condition: front points to the head of the queue
// Post-condition: A pointer to a node storing the head value from the
// queue will be returned. If no value exists, the pointer
// returned will be pointing to null.

struct queue* dequeue(struct queue **front) {

struct queue *temp;
temp = NULL;

if (*front != NULL) {
temp = (*front);
*front = (*front)->next;
temp -> next = NULL;

}
return temp;

}

COP 3502: Computer Science I (Note Set #17) Page 7 © Mark Llewellyn

Linked List Implementation of a Queue (cont.)

// Pre-condition: front points to the head of the queue
// Post-condition: returns true if the queue is empty, false otherwise.
int empty(struct queue *front) {

if (front == NULL)
return 1;

else
return 0;

}

COP 3502: Computer Science I (Note Set #17) Page 8 © Mark Llewellyn

Visualizing a Queue Implemented with a
Linked List [Structure Diagrams]

The queue at some point in time

pFront pRear

4 16 8 10

The queue after a dequeue operation

pFront pRear

16 8 10

NULL

NULL

COP 3502: Computer Science I (Note Set #17) Page 9 © Mark Llewellyn

Visualizing a Queue Implemented with a
Linked List [Structure Diagrams] (cont.)

The queue after an enqueue(3) operation

pFront pRear

16 8 10 3 NULL

COP 3502: Computer Science I (Note Set #17) Page 10 © Mark Llewellyn

• A binary tree is a data structure that is made up of nodes
and pointers, much in the same way that a linked list is
structures. The difference between them lies in how they
are organized.

• A linked list represents a linear or predecessor/successor
relationship between the nodes of the list. A tree
represents a hierarchical or ancestral relationship between
the nodes.

• In general, a node in a tree can have several successors
(called children). In a binary tree this number is limited to
a maximum of 2.

Binary Trees

COP 3502: Computer Science I (Note Set #17) Page 11 © Mark Llewellyn

• The top node in the tree is called the root.
• Every node in a binary tree has 0, 1, or 2 children.
• There are actually two different approaches to defining a tree structure,

one is a recursive definition and the other is a non-recursive definition.
• The non-recursive definition basically considers a tree as a special case

of a more general data structure, the graph. In this definition the tree
is viewed to consist of a set of nodes which are connected in pairs by
directed edges such that the resulting graph is connected (every node is
connected to a least one other node – no node exists in isolation) and
cycle-free. This general definition does not specify that the tree have a
root and thus a rooted-tree is a further special case of the general tree
such every one of the node except the one designated as the root is
connected to at least one other node. In certain situations the non-
recursive definition of a tree has certain advantages, however, for our
purposes we will focus on the recursive definition of a tree which is:

Binary Trees (cont.)

COP 3502: Computer Science I (Note Set #17) Page 12 © Mark Llewellyn

• A complete set of terminology has evolved for dealing with trees and
we’ll look at some of this terminology so that we can discuss tree
structures with some degree of sophistication.

• As you will see the terminology of trees is derived from mathematical,
genealogical, and botanical disciplines.

Binary Trees (cont.)

Definition: A tree t is a finite, nonempty set of nodes,

t = {r} U T1 U T2 U…U Tn

with the following properties:

1. A designated node of the set, r, is called the root of the tree; and

2. The remaining nodes are partitioned into n ≥ 0 subsets T1, T2, …, Tn each of which is a
tree (called the subtrees of t).

For convenience, the notation t = {r, T1, T2, …, Tn} is commonly used to denote the tree t.

COP 3502: Computer Science I (Note Set #17) Page 13 © Mark Llewellyn

• Rooted Tree: (from the non-recursive definition) A tree in which one
node is specified to be the root, (call it node c). Every node (other than
c), call it b is connected by exactly one edge to exactly one other node,
call it p. Given this situation, p is b’s parent. Further, b is one of p’s
children.

• Degree of a node: The number of subtrees associated with a particular
node is the degree of that node. For example, using our definition of a
tree the node designated as the root node r has a degree of n.

• Leaf Node: A node of degree 0 has no subtrees and is called leaf node.
All other nodes in the tree have degree of at least one and are called
internal nodes.

• Child Node: Each root ri of subtree ti of tree t is called a child of r.
The term grandchild is defined in a similar fashion as is the term
great-grandchild.

Binary Trees (cont.)

COP 3502: Computer Science I (Note Set #17) Page 14 © Mark Llewellyn

• Parent: The root node r of tree t is the parent of all the roots ri of the
subtrees ti, 1<i≤ n. The term grandparent is defined in a similar
manner.

• Siblings: Two roots ri and rj of distinct subtrees ti and tj of tree t are
called siblings. (These are nodes which have the same parent.)

• The definitional restrictions placed on a binary tree when compared to
a general tree give rise to certain properties that a binary tree will
exhibit that are not exhibited by a general tree. Some of these
properties and corresponding terminology are defined below.

Number of nodes in a binary tree: A binary tree t of height h, h ≥ 0,
contains at least h and at most 2h-1 nodes.

• Height of a binary tree: The height of a binary tree that contains n, n
≥ 0, nodes is at most n and at least log2 (n+1).

Binary Trees (cont.)

COP 3502: Computer Science I (Note Set #17) Page 15 © Mark Llewellyn

• Full binary tree: A binary tree of height h that contains exactly 2h-1
nodes is called a full binary tree. (Each level i in the tree contains the
maximum number of nodes, i.e., every node in level i-1 has two
children.)

Binary Trees (cont.)

A full binary tree

Height = 3, 23-1 = 7

Number of nodes = 7

Not a full binary tree

Height = 4, 24-1 = 15

Number of nodes = 7

COP 3502: Computer Science I (Note Set #17) Page 16 © Mark Llewellyn

• Complete binary tree: A binary tree of height h in which every level except
level 0 has the maximum number of nodes and level 0 nodes are placed from
left to right on the level with no missing nodes. Note that a full binary tree is a
special case of a complete binary tree in which level 0 contains the maximum
number of nodes. Some complete binary trees are shown below.

Binary Trees (cont.)

COP 3502: Computer Science I (Note Set #17) Page 17 © Mark Llewellyn

• A binary tree has a natural linked representation. A
separate pointer is used to reference the root of the tree.

• Each node has a left and right subtree which is reachable
with pointers.

• We’ll look at the specific details for implementing binary
trees a bit later, for now we’ll assume a dynamic structure
with a node structure similar to that shown above.

Binary Tree Implementation

struct treeNode {

int data; //any data type can be used

struct treeNode *left;

struct treeNode *right;

};

COP 3502: Computer Science I (Note Set #17) Page 18 © Mark Llewellyn

• As with any data structure, moving through the structure is
a fundamental necessity. We’ve seen algorithms to
traverse a singly-linked list and are familiar with the basic
concept of data structure traversal.

• For binary trees, there are basically three different
traversals that can be defined. The tree different traversal
algorithms arise as a result of the different ways in which
the root node of a tree can be “visited” with respect to
when its children are “visited”.

– There are actually more than three traversal techniques, but some
of the symmetric cases are never used.

Binary Tree Traversals

COP 3502: Computer Science I (Note Set #17) Page 19 © Mark Llewellyn

Preorder Traversal

– In a preorder traversal, the root node of the tree is visited before
either the left or right child of the root node is visited.

– Labeling the right child as R, the left child as L, and the root node
as N, the order of visitation in a preorder traversal is: NLR.

Binary Tree Traversals (cont.)

The numbers shown in each
node in the tree to the left
indicate the order in which the
node is visited in a preorder
traversal of the tree.

1

2 9

10 1363

4 85 117 12 14 15

COP 3502: Computer Science I (Note Set #17) Page 20 © Mark Llewellyn

Inorder Traversal

– In an inorder traversal, the left child is visited before the root node
is visited and the right child is visited after the root node is visited.

– Labeling the right child as R, the left child as L, and the root node
as N, the order of visitation in an inorder traversal is: LNR.

Binary Tree Traversals (cont.)

The numbers shown in each
node in the tree to the left
indicate the order in which the
node is visited in an inorder
traversal of the tree.

8

4 12

10 1452

1 73 96 11 13 15

COP 3502: Computer Science I (Note Set #17) Page 21 © Mark Llewellyn

Postorder Traversal

– In a postorder traversal, both the left child and the right child are
visited before the root node is visited.

– Labeling the right child as R, the left child as L, and the root node
as N, the order of visitation in a postorder traversal is: LRN.

Binary Tree Traversals (cont.)

The numbers shown in each
node in the tree to the left
indicate the order in which the
node is visited in a postorder
traversal of the tree.

15

7 14

10 1363

1 52 84 9 11 12

COP 3502: Computer Science I (Note Set #17) Page 22 © Mark Llewellyn

Preorder Traversal Algorithm

Binary Tree Traversal Algorithms

void preorder(struct treeNode *p)
{

if (p != NULL)
{ printf(“%d\n”, p->data); // this is the “visit”

preorder(p->left);
preorder(p->right);

}
}

COP 3502: Computer Science I (Note Set #17) Page 23 © Mark Llewellyn

Inorder Traversal Algorithm

Binary Tree Traversal Algorithms (cont.)

void inorder(struct treeNode *p)
{

if (p != NULL)
{ inorder(p->left);

printf(“%d\n”, p->data); // this is the “visit”
inorder(p->right);

}
}

COP 3502: Computer Science I (Note Set #17) Page 24 © Mark Llewellyn

Postorder Traversal Algorithm

Binary Tree Traversal Algorithms (cont.)

void postorder(struct treeNode *p)
{

if (p != NULL)
{ postorder(p->left);

postorder(p->right);
printf(“%d\n”, p->data); // this is the “visit”

}
}

COP 3502: Computer Science I (Note Set #17) Page 25 © Mark Llewellyn

Binary Tree Traversals – Practice Problems
3

54 71 11 56

15 36

7

26 14

33

22

19

87

8

13

9

75

28

10

63 69

59 68

44

Practice Tree #1

Solutions on page 27

COP 3502: Computer Science I (Note Set #17) Page 26 © Mark Llewellyn

Binary Tree Traversals – Practice Problems
3

54711156

1536

7

2614

33

22

19

87

8

13

9

75

28

10

6369

5968

44

Practice Tree #2

Solutions on Page 28

COP 3502: Computer Science I (Note Set #17) Page 27 © Mark Llewellyn

• Preorder Traversal:
3, 13, 22, 19, 26, 54, 71, 33, 14, 11, 87, 8, 56, 9, 75, 28, 15, 10, 63, 36, 7, 69, 59, 68, 44

• Inorder Traversal:
54, 26, 71, 19, 22, 11, 14, 33, 8, 87, 56, 13, 9, 75, 3, 63, 10, 15, 28, 59, 69, 68, 7, 36, 44

• Postorder Traversal:
54, 71, 26, 19, 11, 14, 8, 56, 87, 33, 22, 75, 9, 13, 63, 10, 15, 59, 68, 69, 7, 44, 36, 28, 3

Practice Problem Solutions – Tree #1

COP 3502: Computer Science I (Note Set #17) Page 28 © Mark Llewellyn

• Preorder Traversal:
3, 28, 36, 44, 7, 69, 68, 59, 15, 10, 63, 13, 9, 75, 22, 33, 87, 56, 8, 14, 11, 19, 26, 71, 54

• Inorder Traversal:
44, 36, 7, 68, 69, 59, 28, 15, 10, 63, 3, 75, 9, 13, 56, 87, 8, 33, 14, 11, 22, 19, 71, 26, 54

• Postorder Traversal:
44, 68, 59, 69, 7, 36, 63, 10, 15, 28, 75, 9, 56, 8, 87, 11, 14, 33, 71, 54, 26, 19, 22, 13, 3

Practice Problem Solutions – Tree #2

