
COP 3502: Computer Science I (Note Set #16) Page 1 © Mark Llewellyn

COP 3502: Computer Science I
Spring 2004

– Note Set 16 –
Stacks and Queues: Linked List Implementations

School of Electrical Engineering and Computer Science
University of Central Florida

Instructor : Mark Llewellyn
markl@cs.ucf.edu
CC1 211, 823-2790
http://www.cs.ucf.edu/courses/cop3502/spr04

COP 3502: Computer Science I (Note Set #16) Page 2 © Mark Llewellyn

More Linked List Functions
• Before we look at specific stack and queue

implementations using linked lists, we’ll develop a
few more functions that operate on general linked lists.

• For example, we haven’t yet constructed a function
that will traverse the links of a linked list and print out
the values in the nodes as it encounters them.

• Neither have we developed a function that will create a
linked list, so far we’ve just assumed that the lists we
have been inserting into and deleting from have
existed.

COP 3502: Computer Science I (Note Set #16) Page 3 © Mark Llewellyn

Traversing a Linked List

• Algorithms that traverse a list start at the first node and
“visit” each node in succession until the last node has been
“visited”.

• What exactly constitutes a visit depends on the purpose of
the algorithm. It may be that the algorithm is simply
counting the number of nodes in the list, in which case the
visit doesn’t really do anything other than record the fact
that the node exists. On the other hand, the algorithm may
be printing the data values that appear in each of the nodes,
in which case the visit will read a data value in each node
and print that value.

• Let’s develop an algorithm that will traverse a linked list.

COP 3502: Computer Science I (Note Set #16) Page 4 © Mark Llewellyn

Traversing a Linked List (cont.)

4

pList

NULLThe list

6 8 12

pWalker

As the pointer pWalker moves
forward through the list it
eventually visits every node in
the list.

COP 3502: Computer Science I (Note Set #16) Page 5 © Mark Llewellyn

Traversing a Linked List (cont.)

• The basic logic to traverse a linked list is shown in the
pseudocode below:

• Two basic concepts are incorporated in this algorithm.

1. An event loop is used to guard against overrunning the end of the
list.

2. After processing the current node, the looping pointer is advanced
to the next node.

traverse (list)

Set pointer to the first node in the list

while (not end of the list)

process (current node)

set pointer to next node

end traverse

COP 3502: Computer Science I (Note Set #16) Page 6 © Mark Llewellyn

Function: printList
// This function traverses a linked list and prints the values in each node
// Since list data type is integer, function prints 10 values/line.
// preconditions: pList is a valid linked list.
// postconditions: each node in the list has been printed.
void printList (NODE *pList)
{

// local definitions
NODE *pWalker;
int lineCount = 0;

// the code
pWalker = pList;
printf(“\n List contains:\n”);
while (pWalker)
{ if (++lineCount > 10)

{ lineCount = 1; //reset lineCount for next 10 values
printf(“\n”);

} //end if
printf(“%3d “, pWalker->data.key);
pWalker = pWalker->link;

} //end while
printf(“\n”);
return;

} //end printList

ANSI/ISO C guarantees that
the evaluation of a null pointer
will be false. So this
expression is equivalent to:

while (pWalker != NULL)

COP 3502: Computer Science I (Note Set #16) Page 7 © Mark Llewellyn

Practice Problem: Traversing a Linked List

• As a practice problem write a C function, similar
to the one we just developed, that will return the
average of all the values in a linked list.

• Write your function in the same style that we have
developed. What type of value should your
function return? What are the input parameters to
your function?

• One possible solution to this problem appears on
the next page. Don’t look at it until you’ve written
one of your own.

COP 3502: Computer Science I (Note Set #16) Page 8 © Mark Llewellyn

Function: averageList

// This function traverses a linked list and averages the values in the list
// preconditions: pList is a valid linked list of integers.
// postconditions: the average value in the list is returned
void averageList (NODE *pList)
{

// local definitions
NODE *pWalker;
int total = 0;
int count = 0;

// the code
pWalker = pList;
while (pWalker)
{ total += pWalker->data.key;

count++;
pWalker = pWalker->link;

} //end while
return (double) total/count;

} //end averageList

COP 3502: Computer Science I (Note Set #16) Page 9 © Mark Llewellyn

Building a Linked List

• We’ve developed several low-level functions for
manipulating a linked list, insertion, deletion, and key-
based searching as well as two applications, printing and
determining the average.

• Now we need to consider how to construct a linked list
from scratch.

• Again, we’ll consider building a key-based linked list for
the time being.

• Regardless of how the list nodes are ordered, the basic
insertion logic remains the same. We need to get the data,
create the node, determine the insertion point in the list,
and then insert the new node. This process is illustrated on
the next page.

COP 3502: Computer Science I (Note Set #16) Page 10 © Mark Llewellyn

Design for Building a Linked List

build...

list pointer list pointer

getData locatePre insertNode

This function is
dependent on whether
we are building a key-
based list or a
chronologically-based
list.

COP 3502: Computer Science I (Note Set #16) Page 11 © Mark Llewellyn

Function: buildKeyList
// This function constructs a key-based linked list from a file of data.
// preconditions: fileID is the file that contains the data.
// postconditions: the list is built and a pointer to the head of the list is returned.
NODE *buildKeyList (char *fileID)
{

// local definitions
DATA data;
NODE *pList; // head pointer
NODE *pPre; // logical predecessor pointer
NODE *pCur; // current pointer
FILE *fpData; // data file pointer

// the code
pList = NULL;
fpData = fopen(fileID, “r”); //open file for reading
if (!fpData)
{ printf(“Error opening file %s\a\n”, fileID);

exit(210);
} // end if
while (getData (fpData, &data))
{ // find correct insert location

searchList(pList, &pPre, &pCur, data.key);
pList = insertNode(pList, pPre, data);

} // end while
return pList;

} //end buildKeyList

COP 3502: Computer Science I (Note Set #16) Page 12 © Mark Llewellyn

Removing Nodes From a Linked List

• Recall that our function to delete a node from a linked list
was a low-level function. It assumed that some other
function had set the values of the predecessor and current
pointers, i.e., had found the node to be deleted.

• As with the high-level design for building (inserting into) a
linked list, we need a similar high-level design for
removing nodes from a linked list.

• This design is illustrated on the next page.

COP 3502: Computer Science I (Note Set #16) Page 13 © Mark Llewellyn

Design for Removing Nodes From a Linked List

delete...

searchList deleteNode

This function is
dependent on whether
we are building a key-
based list or a
chronologically-based
list.

COP 3502: Computer Science I (Note Set #16) Page 14 © Mark Llewellyn

Function: deleteKeyNode
// This function deletes a specified target value from a key-based linked list.
// preconditions: pList is a valid list.
// postconditions: the head pointer is returned and the list no longer includes the target node.
NODE *deleteKeyNode (Node *pList)
{

// local definitions
int target; // value to be deleted
int found;
NODE *pPre; // logical predecessor pointer
NODE *pCur; // current pointer

// the code
if (!pList)
{ printf(“List is empty...can’t delete. \n”);

return pList;
}
printf(“Enter value of node to be deleted: “);
scanf(“%d”, target);
found = searchList(pList, &pPre, &pCur, target);
if (found)
{ // target acquired – delete it

pList = deleteNode(pList, pPre, pCur);
}
else //target not found
{ printf(“Target value does not exist.\n”);
}
return pList;

} //end deleteKeyNode

COP 3502: Computer Science I (Note Set #16) Page 15 © Mark Llewellyn

Visualizing a Stack Implemented with a
Linked List [Structure Diagrams]

The stack at some point in time

4

pTop

NULL

16 8 10

pTop

NULL

16 8 10

The stack after a pop operation has occurred

pTop

NULL

16 8 10

The stack after a push(11) operation has occurred

11

COP 3502: Computer Science I (Note Set #16) Page 16 © Mark Llewellyn

Linked List Implementation of a Stack

// Arup Guha
// 11/7/01
// Small stack implementation
#include <stdio.h>

// Struct used to form a stack of integers.
struct stack {

int data;
struct stack *next;

};

// Prototypes
int push(struct stack **front, int num);
struct stack* pop(struct stack **front);
int empty(struct stack *front);
int top(struct stack *front);
void init(struct stack **front);

COP 3502: Computer Science I (Note Set #16) Page 17 © Mark Llewellyn

Linked List Implementation of a Stack (cont.)

int main() {

struct stack *stack1, *temp;
int tempval;

init(&stack1);

if (!push(&stack1, 3))
printf("Push failed.\n");

if (!push(&stack1, 5))
printf("Push failed.\n");

temp = pop(&stack1);
if (temp !=NULL)
printf("Pop stack = %d\n", temp->data);

COP 3502: Computer Science I (Note Set #16) Page 18 © Mark Llewellyn

Linked List Implementation of a Stack (cont.)
if (empty(stack1))

printf("Empty stack\n");
else

printf("Contains elements.\n");

tempval = top(stack1);
if (tempval != -1)

printf("Top of Stack = %d\n", tempval);

temp = pop(&stack1);
temp = pop(&stack1);
if (temp != NULL)

printf("Top of Stack = %d\n", temp->data);
else

printf("Tried to pop an empty stack.\n");

return 0;
}
void init(struct stack **front) {

*front = NULL;
}

COP 3502: Computer Science I (Note Set #16) Page 19 © Mark Llewellyn

Linked List Implementation of a Stack (cont.)

// Pre-condition: front points to the top of the stack.
// Post-condition: a new node storing num will be pushed on top of the
// stack if memory is available. In this case a 1 is returned. If no memory is found,
// no push is executed and a 0 is returned.

int push(struct stack **front, int num) {

struct stack *temp;
// Create temp node and link it to front.
temp = (struct stack *)malloc(sizeof(struct stack));

if (temp != NULL) {
temp->data = num;
temp->next = *front;
*front = temp;
return 1;

}
else

return 0;
}

COP 3502: Computer Science I (Note Set #16) Page 20 © Mark Llewellyn

Linked List Implementation of a Stack (cont.)

// Pre-condition: front points to the top of a stack
// Post-condition: A pointer to a node storing the top value from the
// stack will be returned. If no value exists, the pointer
// returned will be pointing to null.

struct stack* pop(struct stack **front) {

struct stack *temp;
temp = NULL;

if (*front != NULL) {
temp = (*front);
*front = (*front)->next;
temp -> next = NULL;

}
return temp;

}

COP 3502: Computer Science I (Note Set #16) Page 21 © Mark Llewellyn

Linked List Implementation of a Stack (cont.)

// Pre-condition: front points to the top of a stack
// Post-condition: returns true if the stack is empty, false otherwise.
int empty(struct stack *front) {

if (front == NULL)
return 1;

else
return 0;

}

// Pre-condition: front points to the top of a stack
// Post-condition: returns the value stored at the top of the stack if the
// stack is non-empty, or -1 otherwise.
int top(struct stack *front) {

if (front != NULL) {
return front->data;

}
else

return -1;
}

COP 3502: Computer Science I (Note Set #16) Page 22 © Mark Llewellyn

Visualizing a Queue Implemented with a
Linked List [Structure Diagrams]

The queue at some point in time

pFront pRear

4 16 8 10

The queue after a dequeue operation

pFront pRear

16 8 10

NULL

NULL

COP 3502: Computer Science I (Note Set #16) Page 23 © Mark Llewellyn

Visualizing a Queue Implemented with a
Linked List [Structure Diagrams] (cont.)

The queue after an enqueue(3) operation

pFront pRear

16 8 10 3 NULL

Before the next class you write a linked list implementation for a queue.
We’ll look at the code for this next class.

Don’t forget that Exam #2 is Thursday March 18th

