
COP 3502: Computer Science I  (Note Set #15)              Page 1 © Mark Llewellyn

COP 3502: Computer Science I
Spring 2004

– Note Set 15  –
Data Structures: Linked Lists

School of Electrical Engineering and Computer Science
University of Central Florida

Instructor : Mark Llewellyn
markl@cs.ucf.edu
CC1 211, 823-2790
http://www.cs.ucf.edu/courses/cop3502/spr04



COP 3502: Computer Science I  (Note Set #15)              Page 2 © Mark Llewellyn

Linked Lists

• A linked list is an ordered collection of data in which 
each element (generally called nodes) contains the 
location of the next element; that is, each element 
contains two parts: a data part and a link part.

• The data part holds the useful information (as far as 
the user is concerned).  The link is used to chain the 
data together.  It contains a pointer that identifies the 
next node in the list.

• A pointer variable points to the first node in the list.  
The name of the list is the same as the name of this 
pointer variable.



COP 3502: Computer Science I  (Note Set #15)              Page 3 © Mark Llewellyn

Example Linked Lists

d a t a l i n k d a t a l i n k d a t a l i n k

p L i s t

p L i s t

N U L L

N U L L

A  l i n k e d  l i s t  c o n t a i n i n g  t h r e e  e l e m e n t s

A n  e m p t y  l i n k e d  l i s t

d a t a l i n k

A  l i s t  n o d e



COP 3502: Computer Science I  (Note Set #15)              Page 4 © Mark Llewellyn

Linked List  Nodes

• The nodes in a linked list are called self-referential 
structures.

• Each instance of the structure contains a pointer to 
another instance of the same type.

• The code on the next page represents the type 
definitions necessary to define a generic linked list.  
Some of the code will need to be filled in for a 
particular application.



COP 3502: Computer Science I  (Note Set #15)              Page 5 © Mark Llewellyn

A Generic Linked List Structure

// Global declarations
typedef int KEY_TYPE;     //application dependent

typedef struct
{

KEY_TYPE  key;
...  //other data fields as necessary

} DATA;

typedef struct node
{

DATA    data;
struct node *link;

} NODE;



COP 3502: Computer Science I  (Note Set #15)              Page 6 © Mark Llewellyn

Pointers to Linked Lists

• One of the attributes of a linked list is that its data are not stored 
with physical adjacency, i.e., next to each other as is the case in 
an array.

• Without a physical relationship between the nodes, we need 
some mechanism to distinguish the beginning of the list, i.e., a
way to identify the first logical node in the list.

• This is typically done with a pointer referred to as a head pointer
or list pointer.

• Although it is not a requirement to have a head pointer, it is very 
convenient and is commonly used.  We’ll adopt this mechanism 
for our linked lists.

• Typically, there will be additional pointers that reference nodes 
within a linked list.  These are commonly used to assist in 
traversing (walking) the list or other application dependent uses.



COP 3502: Computer Science I  (Note Set #15)              Page 7 © Mark Llewellyn

Linked List Order

• Because a linked list is a linear structure, it always has an order.  
The order can be based on many things including chronological 
order (order of arrival or insertion into the list) and key-based 
order (lexical ordering based on the key value of the data items, 
such as alphabetic, numeric, etc.).  Another common way to 
order the nodes in a linked list is based on the priority of the
objects represented by the nodes of the list.

• Chronological linked lists are ordered by time.  We’ve already 
seen two chronologically ordered lists in stacks and queues.  In
general there are FIFO lists and LIFO lists.

• Key-based linked lists are probably the most common type of 
linked list.  New data is added at the correct point in the list
based on the lexical ordering of the key values and the data 
which is already in the list at the time of the insertion.



COP 3502: Computer Science I  (Note Set #15)              Page 8 © Mark Llewellyn

Primitive Linked List Functions

• As with any data structure, to work with a linked list, 
we need some basic operations that manipulate the 
nodes.  

• For example, we need to be able to insert nodes in the 
list, delete nodes from the list, search for the location 
of data (nodes) within the list, and so on.  Given these 
primitive list functions, we can build functions that 
will process any linked list.



COP 3502: Computer Science I  (Note Set #15)              Page 9 © Mark Llewellyn

Linked List Functions: Design Approach

• Before going any further we need to discuss our 
design approach.

• Functions that change the contents of the list, such as 
insertion and deletion, will return the list head pointer.  
This design allows us to maintain the list easily by 
assigning the function’s return value to the head.

pList = insertNode (…);

If the head of the list changes, it is automatically 
updated.  If it doesn’t change, then the list head is 
simply reset to its original address.



COP 3502: Computer Science I  (Note Set #15)              Page 10 © Mark Llewellyn

Linked List Functions: Design Approach
(cont . )

• Functions that do not change the contents of the list 
return values that are consistent with their purpose.

– For example, a function to locate a node will return an 
integer to indicate found or not found.

– A function to determine the number of nodes in the list will 
return an integer count.

• Functions that process the entire list, such as printing 
the list, usually will return void.



COP 3502: Computer Science I  (Note Set #15)              Page 11 © Mark Llewellyn

Insertion Into A Linked List

• The following four steps are necessary to insert a node into a 
linked list.

1. Allocate memory for the new node.

2. Determine the insertion point.  To identify this position we need 
only to know the new node’s logical predecessor.

3. Point the new node’s link field to its logical successor.

4. Point the predecessor to the new node.

• As indicated by step 2, we need to determine the location of the
logical predecessor of the new node.  There are four cases that 
arise as to the location of this logical predecessor.  Can you 
identify all four cases?



COP 3502: Computer Science I  (Note Set #15)              Page 12 © Mark Llewellyn

Location of the Logical  Predecessor Node

• The fours cases for the location of the new node’s logical 
predecessor are:

1. It has none, the list is empty.  The new node will become the first 
node in the list.

2. It is in the first location of the list, meaning that the new node will 
become the first node in the list after the insertion occurs.

3. It is in the last location of the list, meaning that the new node will 
become the last node in the list after the insertion occurs.

4. It is at some arbitrary point which is neither the first node nor the 
last node in a list, meaning that the new node will be embedded in 
the middle of the list and will not be either the first nor last node in 
the list after the insertion occurs.

• We need to determine how these four cases are similar and how 
they are different, but we must be able to handle all of them.



COP 3502: Computer Science I  (Note Set #15)              Page 13 © Mark Llewellyn

Case 1: Insert ion Into An Empty List

4

p L i s t

N U L L

A  l i s t  a f t e r  t h e  i n s e r t i o n  o f  t h e  n e w  n o d e

p L i s t

N U L L

A n  e m p t y  l i n k e d  l i s t

4

T h e  n e w  n o d e  t o  b e  i n s e r t e d



COP 3502: Computer Science I  (Note Set #15)              Page 14 © Mark Llewellyn

Case 2: Insertion At The Head Of A List

2

p L i s t

N U L L

A  l i s t  a f t e r  t h e  i n s e r t i o n  o f  t h e  n e w  n o d e

p L i s t

N U L L

T h e  i n i t i a l  l i n k e d  l i s t

2

T h e  n e w  n o d e  t o  b e  i n s e r t e d
A s s u m e  a  k e y -b a s e d  l i s t .

4

4



COP 3502: Computer Science I  (Note Set #15)              Page 15 © Mark Llewellyn

A Closer Look At Cases 1 and 2

• Notice how similar are cases 1 and 2.

• In both cases the head pointer pList winds up pointing  
to the newly inserted node.

• In both cases the new node winds up pointing to the 
same location that pList was pointing prior to the 
insert.



COP 3502: Computer Science I  (Note Set #15)              Page 16 © Mark Llewellyn

Case 3: Insertion At The End Of A List

4

p L i s t

N U L L

A  l i s t  a f t e r  t h e  i n s e r t i o n  o f  t h e  n e w  n o d e

p L i s t

N U L L

T h e  i n i t i a l  l i n k e d  l i s t

8

T h e  n e w  n o d e  t o  b e  i n s e r t e d
A s s u m e  a  k e y -b a s e d  l i s t .

4

8



COP 3502: Computer Science I  (Note Set #15)              Page 17 © Mark Llewellyn

Case 4: Insertion In The Middle Of A List

p L i s t

N U L L

T h e  i n i t i a l  l i n k e d  l i s t

6

T h e  n e w  n o d e  t o  b e  i n s e r t e d
A s s u m e  a  k e y -b a s e d  l i s t .

4 8

4

p L i s t

N U L L

A  l i s t  a f t e r  t h e  i n s e r t i o n  o f  t h e  n e w  n o d e

6 8



COP 3502: Computer Science I  (Note Set #15)              Page 18 © Mark Llewellyn

Case 4: Details of the Insertion

6

S t e p  1 :  A l l o c a t e  m e m o r y
p L i s t

N U L L4 8

S t e p  2 :  F i n d  

l o g i c a l   p r e d e c e s s o r

6

p L i s t

N U L L4 8

S t e p  3 :  P o i n t  n e w  

n o d e  t o  i t s  

l o g i c a l   s u c c e s s o r

6

p L i s t

N U L L4 8

S t e p  4 :  P o i n t  p r e d e c e s s o r  

n o d e  t o  t h e  n e w  n o d e



COP 3502: Computer Science I  (Note Set #15)              Page 19 © Mark Llewellyn

A Closer Look At Cases 3 and 4

• Notice again, as with cases 1 and 2, how similar are cases 3 and
4.

• In both cases the new node winds up pointing to the same 
location that its logical predecessor pointed prior to the insertion.

• In both cases the logical predecessor of the new node winds up 
pointing to the new node.

• Since cases 1 and 2 are similar and as are cases 3 and 4, we’ll be 
able to implement our insertion algorithm using only two cases 
representing the combination of these cases as we’ve outlined 
their similarities.



COP 3502: Computer Science I  (Note Set #15)              Page 20 © Mark Llewellyn

Function:  insertNode

//insertNode
//  This function inserts a single node into a linked list.
//  preconditions:  pList is a pointer to the list, which might be null.  pPre points to
//                           the new node’s logical predecessor. Item contains the data.
//  postconditions: returns the head pointer.
NODE *insertNode (NODE *pList;   NODE *pPre;    DATA item)
{ 

// local definitions
NODE *pNew;   //node for the new data item to be inserted.

if (! (pNew = NODE *) malloc(sizeof(NODE))))
printf(“\aMemory overflow in insert\n”), exit (100);

pNew->data = item;   //set the data field in the new node.
// Code for the various insertion cases.



COP 3502: Computer Science I  (Note Set #15)              Page 21 © Mark Llewellyn

Function: insertNode (cont . )

if (pPre == NULL)  //insertion into logical first location or list is empty.
{

pNew->link = pList;  //set new node to point to logical successor.
pList = pNew;    //set logical predecessor to point to new node.

}
else  // insertion in the middle of the list or at the logical end of the list.

{
pNew->link = pPre->link;
pPre->link = pNew;

}

return pList;
}  //end insertNode



COP 3502: Computer Science I  (Note Set #15)              Page 22 © Mark Llewellyn

Deletion of Nodes in a Linked List

• Deleting a node from a linked list requires that we remove the 
node from the linked list by changing various link pointers and 
then physically deleting the node from the heap.

• The situations that can arise for deletion parallel those of 
insertion.  Namely, we can:

1. Delete the first node of a list.

2. Delete any arbitrary node which is neither the first nor last node in the 
list.

3. Delete the last node of a list.

4. A special case occurs when we are deleting the only node in a list 
causing the resulting list to become empty.

• To logically delete a node, we must first find the node itself. 
We’ll use a pointer defined as pCur for this purpose.  We must 
also identify that node’s logical predecessor. 



COP 3502: Computer Science I  (Note Set #15)              Page 23 © Mark Llewellyn

Case 1: Deletion of the First Node in a List

4

p L i s t

N U L L

The  in i t ia l  l i s t  

6

6

p L i s t

N U L L

T h e  l i s t  a f t e r  d e l e t i n g  t h e  f i r s t  n o d e

n o d e  t o  b e  d e l e t e d



COP 3502: Computer Science I  (Note Set #15)              Page 24 © Mark Llewellyn

Case 2: Deletion From The Middle Of A List

4

p L i s t

N U L L

The  in i t ia l  l i s t

6 8

4

p L i s t

N U L L

T h e  l i s t  a f t e r  t h e  d e l e t i o n  h a s  o c c u r r e d

8

t h e  n o d e  t o  b e  d e l e t e d



COP 3502: Computer Science I  (Note Set #15)              Page 25 © Mark Llewellyn

Case 3: Deletion Of The Last Node In A List

4

p L i s t

N U L L

The  in i t ia l  l i s t

6 8

4

p L i s t

N U L L

T h e  l i s t  a f t e r  t h e  d e l e t i o n  h a s  o c c u r r e d

6

t h e  n o d e  t o  b e  d e l e t e d



COP 3502: Computer Science I  (Note Set #15)              Page 26 © Mark Llewellyn

Case 4: Special  Case Of Delet ing The Only 
Node In A List

6

p L i s t

N U L L

The  in i t ia l  l i s t

p L i s t

N U L L

T h e  l i s t  a f t e r  d e l e t i n g  t h e  o n l y  n o d e

De l e t i ng  t he  l a s t  node  i n  a  l i s t  

i s  spec i a l  on l y  i n  t he  s ense  t ha t  

t h e  h e a d  p o i n t e r  v a l u e  w h i c h  i s  

r e tu rned  by  t he  f unc t i on  w i l l  be  

nu l l  i n s t ead  o f  po in t i ng  t o  a  

v a l i d  n o d e .   H o w e v e r ,  u n d e r  o u r  

des i gn  c r i t e r i a  t h i s  i s  wha t  we  

w o u l d  e x p e c t  t o  h a v e  

h a p p e n e d .



COP 3502: Computer Science I  (Note Set #15)              Page 27 © Mark Llewellyn

A Closer Look At The Deletion Cases

• As with insertion, the various cases of deletion have 
similarities that allow us to combine the cases in our 
implementation.

• Notice cases 1 and 4 are similar in that the head pointer 
winds up pointing to the logical successor of the deleted 
node.

• Similarly, cases 2 and 3 are similar in that the logical 
predecessor of the node which is deleted winds up pointing 
to the node that was the logical successor of the deleted 
node.

• As before, we’ll combine these cases in the 
implementation.



COP 3502: Computer Science I  (Note Set #15)              Page 28 © Mark Llewellyn

Funct ion:  deleteNode

//deleteNode
//  This function deletes a single node from a linked list.
//  preconditions:  pList is a pointer to the list.  pPre points to the logical predecessor
//                          of the node to be deleted.  pCur points to the node to be deleted.
//  postconditions: deletes and recycles pCur. Returns the head pointer.
NODE *deleteNode (NODE *pList;   NODE *pPre;    NODE *pCur)
{ 

if (pPre == NULL)    //deleting the first node in the list.
pList = pCur->link;  //set the head pointer to the deleted node’s logical successor.

else  //deleting an arbitrary node in the list.
pPre->link = pCur->link;

free(pCur);
return(pList);

} //end deleteNode



COP 3502: Computer Science I  (Note Set #15)              Page 29 © Mark Llewellyn

A Closer Look At The deleteNode Function

• There are three points in the deleteNode function 
worth mentioning.

1. The most important of these is that this function 
requires that the node to be deleted be identified before 
calling the function.  It assumes that pCur and pPre are 
set at the time of the call.

2. Only one free() call is needed, there is no need to 
duplicate the free call in each block of the if statement.

3. As per our design criteria, the function returns the 
head pointer.



COP 3502: Computer Science I  (Note Set #15)              Page 30 © Mark Llewellyn

Searching A Key-Based Linked List

• Our design of the insertNode and deleteNode functions requires 
that we find the insertion point and the node to be deleted 
respectively.

• The search methods on linked lists vary depending on the logical
ordering of the nodes in the list.  For now, we’ll restrict our 
considerations to key-based lists only.

• As we’ve seen, insertion requires us to identify the logical 
predecessor to the new node and for deletion we must identify 
both the node itself and its logical predecessor.  If you think 
about other functions such as adding a node to a count of nodes 
or printing the contents of a node, these too will require knowing 
the location of the node.  While we could write separate search 
functions for all three cases, it would be more efficient if we 
write one search function that will satisfy all of these 
requirements.  Thus our search function will return both the 
predecessor and the current (found) locations.



COP 3502: Computer Science I  (Note Set #15)              Page 31 © Mark Llewellyn

Searching A Key-Based Linked List (cont . )

• Given a target key, the search function will attempt to locate the 
requested node in the linked list.

• If a node in the list matches the target value, the search function 
should return true (1); if no key matches, it will return false (0).  
The predecessor and current pointers are set according to the 
rules shown on the next page.

• Since the list is maintained in key sequence order, we can use a
modified version of a sequential search which is commonly 
referred to as an “ordered sequential search”.

– Start at the beginning of the list and search sequentially until the 
target is no longer greater than the current node’s key.  At this point 
the target value is either less than or equal to the current node’s key 
value.  The predecessor at this point is pointing to the node which 
logically precedes the current node.  A test if pCur->data matches 
the target will determine the success of our search.



COP 3502: Computer Science I  (Note Set #15)              Page 32 © Mark Llewellyn

Searching A Key-Based Linked List (cont . )

0NULLlast nodetarget > last node

1last nodelast’s predecessortarget == last node

1equal nodenode’s predecessortarget == middle node

0first node > targetlargest node < targetfirst < target < last

1first nodeNULLtarget == first node

0first nodeNULLtarget < first node

return 
value

pCurpPreCondition



COP 3502: Computer Science I  (Note Set #15)              Page 33 © Mark Llewellyn

Function: searchList

//searchList
//  Given a key value, this function find the location of a node matching this key value.
//  preconditions:  pList is a pointer to the list.  pPre points to a variable to receive
//                          the logical predecessor.  pCur points to a variable to receive the
//                          current node.
//  postconditions: pCur points to the first node with equal/greater key value, or null if
//                           target > key of the last node in the list.  pPre points to the largest node
//                           smaller than the key value, or null if the target < key of first node in
//                           the list.  Function returns 1 if found and 0 otherwise.
int searchList (NODE *pList,   NODE **pPre,    NODE **pCur;  KEY_TYPE target)
{ 

//local definitions
int found = 0;

pPre = NULL;  //no initial predecessor.
pCur = pList;   //set current pointer to head of the list.



COP 3502: Computer Science I  (Note Set #15)              Page 34 © Mark Llewellyn

Function: searchList (cont . )

//start the search from the beginning of the list.
while (*pCur != NULL && target > (*pCur)->data.key)

{
*pPre = *pCur;  // advance pointer.
*pCur = (*pCur)->link;   //advance pointer.

}
if (*pCur && target == (*pCur)->data.key)

found = 1;  //successful search – target acquired

return found;
} //end searchList


