
COP 3502: Computer Science I (Note Set #14) Page 1 © Mark Llewellyn

COP 3502: Computer Science I
Spring 2004

– Note Set 14 –
Data Structures: Queues

School of Electrical Engineering and Computer Science
University of Central Florida

Instructor : Mark Llewellyn
markl@cs.ucf.edu
CC1 211, 823-2790
http://www.cs.ucf.edu/courses/cop3502/spr04

COP 3502: Computer Science I (Note Set #14) Page 2 © Mark Llewellyn

A Modification to our Stack Data Structure
• If you studied the stack implementation that we covered in the

last section of the notes, you will have discovered that our stack
is array based and has a maximum size of 20 elements (see Note
Set 13, page 33).

• What would happen if we needed to place more than 20
elements into the stack? Suppose that in the application to
reverse a string, the string was more than 20 characters in length.
Then our program would fail to properly reverse the string
because the stack would overflow.

• However, it would be extremely likely that there was a sufficient
amount of memory in the machine to have made the stack larger.
We don’t want to waste memory by making the static stack too
large, but we also want it to be large enough to handle any
expected input without causing the stack to overflow.

• The solution is to dynamically resize the stack if necessary.

COP 3502: Computer Science I (Note Set #14) Page 3 © Mark Llewellyn

A Modification of the Stack Data Structure (cont.)

• We have already seen how to dynamically create an array, so the
technique for resizing our stack is easy to grasp. The basic
technique is:

– Given an array named values (our stack) that is already full and
stores length number of elements, we want to add newval to
the end of the array, we need to do the following:

1. Dynamically create a new array temp, that has more space than
values.

2. Copy each element in values into temp, one by one.

3. Add the new element that didn't fit in the original array into a
remaining open slot in temp.

4. Deallocate the memory for the original array.

5. Assign the pointer values to temp.

• An implementation of this technique is shown on the next page.

COP 3502: Computer Science I (Note Set #14) Page 4 © Mark Llewellyn

Dynamically Re-Sizing An Array

int *temp = (int *)malloc((length+1)*sizeof(int));
for (i=0; i<length; i++) // copy original values

temp[i] = values[i];
temp[i] = newval; //add the new value to the array
delete [] values;
values = temp; //reset pointer to new memory

COP 3502: Computer Science I (Note Set #14) Page 5 © Mark Llewellyn

Dynamic Resizing
• This implementation on the previous page for dynamically

resizing the array will work, but do you notice any potential
weakness of the code?

• What would happen if we had to add one more element into this
array?

• How much time would it take for each addition in terms of the
total number of elements currently in the array?

• Clearly, this strategy of extending the array by one element each
time is too costly. We need a better better strategy:

• Can you think of a better strategy that would reduce the average
time required to insert an additional element above and beyond
our original allocation?

We would resize the array again, copying all of the values into new memory.

O(n)

COP 3502: Computer Science I (Note Set #14) Page 6 © Mark Llewellyn

Dynamic Resizing
• A better strategy turns out to be that whenever you expand the

array you don’t just add one element but rather you double its
size.

• This strategy leads to excellent performance in the long run.
Instead of requiring O(n) time to add an element, where n is the
total number of elements, this strategy requires O(1) on average.

• In order not to waste huge amounts of memory, it is also
advisable to "shrink" this type of array by half when the array is
less than one quarter full. Once again, it can be shown that this
procedure leads to efficient average case running times.

• These ideas can easily be incorporated into a stack class so that
the size of the stack is not so limiting. Even so, a StackIsFull
function is advisable since sometimes a malloc call may return
NULL.

COP 3502: Computer Science I (Note Set #14) Page 7 © Mark Llewellyn

Queues

• A queue is simply a waiting line that grows by adding
elements to its end and shrinks by removing elements from
its front.

• Unlike a stack, a queue is a structure in which both ends
are accessible: one for adding new elements (usually called
the rear) and one for deleting elements already in the queue
(usually called the front).

• Therefore, the last element has to wait until all the elements
preceding it on the queue are removed.

• The access pattern to a queue is called FIFO (First In First
Out).

COP 3502: Computer Science I (Note Set #14) Page 8 © Mark Llewellyn

Queues (cont.)

• Queue operations (interface) are similar to stack
operations. The following operations are needed to
properly manage a queue:

– clear(q) – empty the queue named q, in queue order. O(n).

– isEmpty(q) – checks to see if queue q is empty. O(1).

– isFull(q) – checks to see if queue q is full. O(1).

– enqueue(q, x) – inserts element x at the rear of queue q.
O(1).

– dequeue(q) – removes the element at the front of queue q.
O(1).

– peek(q) – looks at the element at the front of queue q without
removing it from the queue. O(1).

COP 3502: Computer Science I (Note Set #14) Page 9 © Mark Llewellyn

FIFO Nature of a Queue

front

start: 2 4 6 8 10

Q

rear
Sequence of operations

Time Operation
1 insert 12
2 remove
3 insert 14
4 insert 16
5 remove

front

time 1: 2 4 6 8 10

rear

12

front
time 2: 4 6 8 10

rear

12

front
time 3: 4 6 8 10

rear

12 14

front
time 4: 4 6 8 10

rear

12 14 16

front
time 5:

rear

6 8 10 12 14 16

COP 3502: Computer Science I (Note Set #14) Page 10 © Mark Llewellyn

Example - Array Based Queues

front

start: 2 4 6 8 10

Q

rear Sequence of operations

Time Operation
1 remove
2 insert 12
3 remove
4 remove
5 remove
6 remove
7 remove

front

time 1: 4 6 8 10

rear

front
time 2:

rear

front
time 3: 6 8

rear

10

front
time 4: 8

rear

10

front
time 5:

rear

10 12

4 6 8 10 12

12

12

Notice that the queue
now appears to be full
even though there are
locations available in
the array!

COP 3502: Computer Science I (Note Set #14) Page 11 © Mark Llewellyn

Example - Array Based Queues (cont.)

Sequence of operations

Time Operation
1 remove
2 insert 12
3 remove
4 remove
5 remove
6 remove
7 remove

front
time 6:

rear

front
time 7:

rear

12

Notice that the queue
now appears to have
no space available
even though no
locations in the array
hold any values!

front index has gone
“out of range”

COP 3502: Computer Science I (Note Set #14) Page 12 © Mark Llewellyn

Problems with an Array-based Queue

• As the previous example illustrated, there is a
problem with implementing a queue using an array
similar to the way we did with a stack.

• The basic problem is that removing elements from
the queue causes the front of the queue to move.

• The next page illustrates a brute-force method for
handling the problem. What is the problem with
this brute force technique?

COP 3502: Computer Science I (Note Set #14) Page 13 © Mark Llewellyn

Handling an Array Based Queue

front

start: 2 4 6 8 10

Q

rear Sequence of operations

Time Operation
1 remove
2 insert 12
3 remove
4 remove
5 remove
6 remove
7 remove

front

time 1: 4 6 8 10

rear

time 2:

front
time 3: 6 8 10 12

rear

front
time 4: 8 10 12

rear

front
time 5:

rear

10 12

front

4 6 8

rear

10 12

Notice that the array
now has room to add
elements to the queue.

COP 3502: Computer Science I (Note Set #14) Page 14 © Mark Llewellyn

Handling an Array Based Queue (cont.)

Sequence of operations

Time Operation
1 remove
2 insert 12
3 remove
4 remove
5 remove
6 remove
7 remove

front
time 6: 12

rear

front
time 7:

rear

COP 3502: Computer Science I (Note Set #14) Page 15 © Mark Llewellyn

Problems with an Array-based Queue (cont.)

• As the previous example illustrates, this brute-force
technique for handling the deletions from a queue is
extremely costly in that all of the elements that remain in
the queue after the deletion of the element at the front of
the queue must be moved forward one position in the array.

• On average, this is an O(n) time per deletion! However,
conceptually, we know that the time to delete from a queue
should be O(1).

• How can we make efficient use of the array, as well as
implement our insertion and deletion algorithms
efficiently?

COP 3502: Computer Science I (Note Set #14) Page 16 © Mark Llewellyn

Problems with an Array-based Queue (cont.)

• For array based implementations of a queue, a
very common and efficient implementation views
the array as if it were circular.

• In a circular implementation, the queue is
considered to be full whenever the front of the
queue immediately precedes the rear of the queue
in the counterclockwise direction.

• The examples on the following pages should help
you to visualize a “circular” array. Circular arrays
are sometimes referred to as ring buffers
(particularly in OS terminology).

COP 3502: Computer Science I (Note Set #14) Page 17 © Mark Llewellyn

Circular Array Implementation of a Queue

15

2

48

6

10

11

rear

2 15 11 10 6 84

front rear

front

6 8 4 2 15 1110

frontrear

normal array implementation: queue is full

circular array implementation: queue is full

visualization of a queue
implemented as a circular array

COP 3502: Computer Science I (Note Set #14) Page 18 © Mark Llewellyn

Circular Array Implementation of a Queue
(cont.)

• The next several slides illustrate the operation of a circular array based
implementation of a queue.

• The normal implementation (brute-force) is also shown for
comparative purposes. However, remember that it is extremely
inefficient due to the amount of data movement required by dequeue
operations.

• The scenario begins at some point in time before which other enqueue
and dequeue operations have occurred on the queue. Our scenario
begins with some elements already in the queue. As you can see on the
next page, these elements were enqueued in the order of: 2, 4, and 8.
The scenario continues by enqueuing 6, enqueuing 10, dequeue,
enqueuing 18, dequeue, dequeue, dequeue, enqueuing 9, dequeue,
dequeue, and finally one last dequeue which empties the queue at this
point.

COP 3502: Computer Science I (Note Set #14) Page 19 © Mark Llewellyn

Circular Array Implementation of a Queue (cont.)

6

4

2

rear

front

4 82

front rear

normal array implementation

2 4 8

front rear

circular array implementation

visualization of a queue
implemented as a circular array

after insertion of element 6

4 8 62

front rear

2 4 8 6

front rear

8

Enqueue element 6

before

before

after

after

COP 3502: Computer Science I (Note Set #14) Page 20 © Mark Llewellyn

Circular Array Implementation of a Queue (cont.)

6

4

2

rear

front

4 8 62

front rear

normal array implementation

2 4 8 6

front rear

circular array implementation

visualization of a queue
implemented as a circular array

after insertion of element 10

4 8 6 102

front rear

2 4 8 610

frontrear

8

Enqueue element 10

before

before

after

after

10

COP 3502: Computer Science I (Note Set #14) Page 21 © Mark Llewellyn

Circular Array Implementation of a Queue (cont.)

6

4

rear

front

4 8 62

front rear

normal array implementation

2 4 8 6

front rear

circular array implementation

visualization of a queue
implemented as a circular array

after dequeue operation

8 6 104

front rear

4 8 610

frontrear

8

Dequeue

before

before

after

after

10

COP 3502: Computer Science I (Note Set #14) Page 22 © Mark Llewellyn

Circular Array Implementation of a Queue (cont.)

6

4 front

8 6 104

front rear

normal array implementation

4 8 610

frontrear

circular array implementation

visualization of a queue
implemented as a circular array

after enqueue element 18

8 6 10 184

front rear

18 4 8 610

frontrear

8

Enqueue element 18

before

before

after

after

10

18rear

COP 3502: Computer Science I (Note Set #14) Page 23 © Mark Llewellyn

Circular Array Implementation of a Queue (cont.)

6
front

8 6 10 184

front rear

normal array implementation

18 4 8 610

frontrear

circular array implementation

visualization of a queue
implemented as a circular array

after dequeue operation

6 10 188

front rear

18 8 610

frontrear

8

Dequeue

before

before

after

after

10

18rear

COP 3502: Computer Science I (Note Set #14) Page 24 © Mark Llewellyn

Circular Array Implementation of a Queue (cont.)

6

front

6 10 188

front rear

normal array implementation

18 8 610

frontrear

circular array implementation

visualization of a queue
implemented as a circular array

after dequeue operation

10 186

front rear

18 610

frontrear

Dequeue

before

before

after

after

10

18rear

COP 3502: Computer Science I (Note Set #14) Page 25 © Mark Llewellyn

Circular Array Implementation of a Queue (cont.)

front

10 186

front rear

normal array implementation

18 610

frontrear

circular array implementation

visualization of a queue
implemented as a circular array

after dequeue operation

1810

front rear

1810

front rear

Dequeue

before

before

after

after

10

18rear

COP 3502: Computer Science I (Note Set #14) Page 26 © Mark Llewellyn

Circular Array Implementation of a Queue (cont.)

front

1810

front rear

normal array implementation

1810

front rear

circular array implementation

visualization of a queue
implemented as a circular array

after enqueue element 9

18 910

front rear

18 910

front rear

Enqueue element 9

before

before

after

after

10

18

rear

9

COP 3502: Computer Science I (Note Set #14) Page 27 © Mark Llewellyn

Circular Array Implementation of a Queue (cont.)

front

18 910

front rear

normal array implementation

18 910

front rear

circular array implementation

visualization of a queue
implemented as a circular array

after dequeue operation

918

front rear

18 9

front rear

Dequeue

before

before

after

after

18

rear

9

COP 3502: Computer Science I (Note Set #14) Page 28 © Mark Llewellyn

Circular Array Implementation of a Queue (cont.)

front

918

front rear

normal array implementation

18 9

front rear

circular array implementation

visualization of a queue
implemented as a circular array

after dequeue operation

9

front
rear

9

front
rear

Dequeue

before

before

after

after

rear

9

COP 3502: Computer Science I (Note Set #14) Page 29 © Mark Llewellyn

Circular Array Implementation of a Queue (cont.)

front

9

front
rear

normal array implementation

9

front
rear

circular array implementation

visualization of a queue
implemented as a circular array

after dequeue operation

front
rear

front
rear

Dequeue – queue empties

before

before

after

after

rear

COP 3502: Computer Science I (Note Set #14) Page 30 © Mark Llewellyn

Array-based Implementation of a Queue

• There is a circular array implementation of a queue in C on pages 434-
435 in your textbook.

• Note that this implementation implements the circular nature of the
array using modulo arithmetic which simplifies the actual “movement”
of front and rear within the queue.

• For example, suppose we have the situation shown below (same as on
page 25):

if we dequeue at this point we, need to increment front (index 6) by 1,
but index 7 is out of bounds, however, (front +1)%7 = 0 which is
exactly the index where front should be located after the dequeue
operation.

18 610

frontrear

1810

front rear

