
COP 3502: Computer Science I (Note Set #13) Page 1 © Mark Llewellyn

COP 3502: Computer Science I
Spring 2004

– Note Set 13 –
Data Structures: Stacks

School of Electrical Engineering and Computer Science
University of Central Florida

Instructor : Mark Llewellyn
markl@cs.ucf.edu
CC1 211, 823-2790
http://www.cs.ucf.edu/courses/cop3502/spr04

COP 3502: Computer Science I (Note Set #13) Page 2 © Mark Llewellyn

Abstract Data Types and Data Structures

• Data structures are typically assembled from hierarchies.

– The primitive data types of int, char, double, etc. occupy
the lowest level of the hierarchy.

– To represent more complex data/information these
primitive types are combined to form larger structures.

– You build each new level in the hierarchy by using one
of the three basic primitives for constructing types:
arrays, records, and pointers.

• Often, a type is defined in terms of its behavior rather than
its implemented representation. This is called an Abstract
Data Type or ADT.

• Many people also refer to ADTs as data structures.

COP 3502: Computer Science I (Note Set #13) Page 3 © Mark Llewellyn

Abstract Data Types and Data Structures (cont.)

• Most ADTs are defined by an interface that exports the
ADT along with a collection of functions that define the
behavior of that type.

• This has several advantages:

1. Simplicity – Hiding the internal representation of a type from the
user means that the user has fewer details to understand.

2. Flexibility – Since the ADT is defined in terms of its behavior, the
representation of the type can be changed in the implementation.
As long as the interface remains the same the user is unconcerned
with the implementation. This is a form of information hiding.

3. Security – The interface boundary acts like a wall that protects the
implementation and the user from each other. If the user has
knowledge of the representation they might be tempted to write
applications based on the implementation rather than the behavior
of the type, thus causing trouble should the implementation change.

COP 3502: Computer Science I (Note Set #13) Page 4 © Mark Llewellyn

Abstract Data Types and Data Structures (cont.)

• Most of the rest of the term will be devoted to studying
many of the classical data structures and applications to
which they are suitable.

• Part of the behavior of any ADT is a description of how the
data type can be accessed. This is a major component in
defining many different ADTs.

• We’ll begin by looking at some fairly simply ADTs, albeit
with many applications and move toward looking at some
very general ADTs suitable to an even wider range of
applications.

• As we did with the applications of searching and sorting,
we will also be interested in the performance of our data
structures and the applications to which they will be
applied.

COP 3502: Computer Science I (Note Set #13) Page 5 © Mark Llewellyn

Stacks

• The stack is a widely used data structure.

• It consists of a variable number of homogeneous elements
(i.e., elements of the same type).

• The access policy for a stack is simple – the first element to
be removed from the stack is the last element that was
placed onto the stack.

• This access policy is also known as LIFO (Last In – First
Out). This is analogous to a stack of trays in a cafeteria
where you take the top tray and the stack moves up so that
the next person in line would take the tray that was in the
second position before you took your tray off the top, but
now the tray they take is on the top.

COP 3502: Computer Science I (Note Set #13) Page 6 © Mark Llewellyn

Stacks (cont.)

• The basic insertion and deletion operations on a
stack are given special names as is the end of the
stack at which the insertions and deletions occur.

– Insertion into a stack is called pushing the stack. So
rather than an insert operation we have a push operation.

– Deletion from a stack is called popping the stack. so
rather than a delete operation we have a pop operation.

– The end of the stack at which pushes and pops occur is
referred to as the top of the stack.

COP 3502: Computer Science I (Note Set #13) Page 7 © Mark Llewellyn

LIFO Nature of a Stack

PUSH Operation

Top

6

Element to be inserted into S

(before push) (after push)

24

13

7

22

9

Top

Stack S
Stack S

6

24

13

7

22

9

COP 3502: Computer Science I (Note Set #13) Page 8 © Mark Llewellyn

LIFO Nature of a Stack

POP Operation

6

24

13

7

22

9

Top

Element removed

24

13

7

22

9

Top

6

(stack before pop)

(stack after pop)

6

COP 3502: Computer Science I (Note Set #13) Page 9 © Mark Llewellyn

Defining the Behavior of a Stack

• A more formal definition for a stack is that it is a restricted
list in which entries are added to and removed from one
designated end called the top.

• The operations which define the behavior of a stack are:

– create(s): creates an empty stack named s.

– isempty(s): returns true if stack s is empty, false otherwise.

– push(s,x): Item x is added to stack x.

– pop(s,x): Item x is loaded with the value from the top of stack s.

– peek(s,x): The value on the top of stack s is loaded into x but is not
removed from the top of stack x.

COP 3502: Computer Science I (Note Set #13) Page 10 © Mark Llewellyn

Implementing a Stack

• A stack can be implemented using static or dynamic
memory.

• If static memory is utilized, there is the possibility that the
stack can become full. When this occurs, it is not possible
to add any additional elements to the stack until room
becomes available via pop operations.

• Although it is also possible to exhaust dynamic memory,
this is much less likely to occur and overflowing the stack
becomes less of a concern with dynamic memory
implementations.

• We’ll see details of both implementations later, but for now
let’s concentrate on some applications for stacks and not
worry about the implementation issues.

COP 3502: Computer Science I (Note Set #13) Page 11 © Mark Llewellyn

Parsing and Evaluating Arithmetic Expressions

• Often the logic of problems for which stacks are a suitable
data structure involves the need to backtrack and return to a
previous state.

– For example, consider the problem of finding your way out of a
maze. One approach is to probe a given path in the maze as deeply
as possible. On finding a dead end, you need to backtrack to the
previously visited maze locations to try other available paths. Such
backtracking requires recalling the previous locations in the reverse
order from which you visited them first time.

• While you don’t often need to extract yourself from a
maze, designers of compilers are faced with a similar
backtracking problem when evaluating arithmetic
expressions.

COP 3502: Computer Science I (Note Set #13) Page 12 © Mark Llewellyn

Parsing and Evaluating Arithmetic Expressions (cont.)

• Consider the following expression: A + B / C + D. When
you scan this in left-to-right order, it is impossible to tell
upon initially encountering the plus sign whether or not
you should apply the indicated addition operation to A and
operand which follows the + operation symbol.

• Instead, you need to probe further into the expression to
determine if an operation with higher precedence occurs.

• While you are probing deeper into the expression you need
to stack the previously encountered operation symbols until
you are certain of the operands to which they can be
applied.

COP 3502: Computer Science I (Note Set #13) Page 13 © Mark Llewellyn

Parsing and Evaluating Arithmetic Expressions (cont.)

• The backtracking problem in expression evaluation is
further compounded by the many different ways possible to
represent the same algebraic expression.

– For example, the following assignment statements should all result
in the same order of arithmetic operations even though the
expressions are written in distinctly different forms:

Z = A * B / C + D

Z = (A * B) / C + D

Z = ((A * B) / C) + D

• The process of checking the syntax of such an expression
and representing it in one unique form is called parsing the
expression.

• One very common parsing method relies heavily on stacks.

COP 3502: Computer Science I (Note Set #13) Page 14 © Mark Llewellyn

Infix, Postfix and Prefix Notation

• Conventional algebraic notation is called infix
notation. In infix notation the arithmetic operator
appears between the two operands to which it is
being applied.

• Infix notation may require parentheses to specify a
desired order of operations.

– For example, in the expression A / B + C, the division
operation will occur first. If we want the addition to
occur first, the expression must be parenthesized as:

A / (B + C)

COP 3502: Computer Science I (Note Set #13) Page 15 © Mark Llewellyn

Infix, Postfix and Prefix Notation (cont.)

• Using postfix notation (also called reverse Polish
notation after the nationality of its originator,
Polish logician Jan Lukasiewicz), the need for
parentheses is eliminated because the operator is
placed directly after the two operands to which it
applies.

– Thus, the infix expression A / B + C would be written as
A B / C + in postfix notation.

– Similarly, the infix expression A / (B + C) would be
written as A B C + / in postfix notation.

COP 3502: Computer Science I (Note Set #13) Page 16 © Mark Llewellyn

Infix, Postfix and Prefix Notation (cont.)

• Although simple infix expressions can be
converted to postfix expressions using an intuitive
process, a more systematic method is required for
complicated expressions.

• Before looking at a complete algorithm for
converting an infix expression into its postfix
form, let’s consider a simple algorithm for a
human to do the same thing. Understanding this
algorithm will give you a better insight as to how
the computer algorithm actually works.

COP 3502: Computer Science I (Note Set #13) Page 17 © Mark Llewellyn

Simple Algorithm to Convert Infix to Postfix

1. Completely parenthesize the infix expression to specify the order of all
operations.

2. Move each operator to the space held by its corresponding right
parenthesis.

3. Remove all parentheses.

– Example: Infix expression: A / B ^ C + D * E – A * C

Step 1: (((A / (B ^ C)) + (D * E)) – (A * C))

Step 2: (((A / (B ^ C)) + (D * E)) – (A * C))

Step 2a: (((A (B C ^ / (D E * + (A C * –

Step 3: A B C ^ / D E * + A C * –

COP 3502: Computer Science I (Note Set #13) Page 18 © Mark Llewellyn

Practice Problems: Converting Infix to Postfix

• For practice convert each of the following infix expressions
to postfix form using the previous algorithm. Answers are
given on the next page.

1. A + B * C – D * E / F

2. A + B ^ C / D * E + F – A

3. A ^ B ^ C / 2 * B + 4

4. A / B + C / D – E * F ^ 2 / B

5. (A + B) * (C – B) / 2 ^ 4

6. (A + B) * (C – D)

7. A – B / (C + D * E)

8. ((A + B) * C – (D – E))/(F + G)

COP 3502: Computer Science I (Note Set #13) Page 19 © Mark Llewellyn

Practice Problems: Converting Infix to Postfix

Solutions
1. A B C * + D E * F / –

2. A B C ^ D / E * + F + A –

3. A B ^ ^ C 2 / B * 4 +

4. A B / C D / + E F 2 ^ * B / –

5. A B + C B - * 2 4 ^ /

6. A B + C D – *

7. A B C D E * + / –

8. A B + C * D E – – F G + /

COP 3502: Computer Science I (Note Set #13) Page 20 © Mark Llewellyn

Algorithm for Converting Infix to Postfix

while there are more characters in the input
{

Read next symbol ch in the given infix expression.
If ch is an operand put it directly into the output.
If ch is an operator (i.e.*,/,+,-, or ^)
{

// check the item op at the top of the stack
while (more items in the stack && precedence(ch) <=precedence (op)
{

pop op and append it to the output.
// op becomes the next top element

}
push ch onto stack

}
}
pop any symbols remaining in the stack

COP 3502: Computer Science I (Note Set #13) Page 21 © Mark Llewellyn

Example Using the Algorithm to Convert Infix to Postfix
• Example: Infix expression: A / B ^ C + D * E – A * C

Input char = A, operand sent to output: A
Input char = /, operator and stack is empty, push / [stack /]
Input char = B, operand sent to output: A B
Input char = ^, operator, precedence higher than top, push ^ [stack ^ /]
Input char = C, operand sent to output: A B C
Input char = +, operator, precedence lower than top, pop ^ [stack /]

continuing, precedence lower than top, pop / [stack empty]
output is A B C ^ /, push + stack[+]

Input char = D, operand sent to output: A B C ^ / D
Input char = *, operator and precedence higher than top, push * [stack * +]
Input char = E, operand sent to output: A B C ^ / D E
Input char = –, operator, precedence lower than top, pop * & +, push – stack[–]
Input char = A, operand, sent to output: A B C ^ / D E * + A
Input char = *, operator, precedence higher than top, push * stack[* –]
Input char = C, operand, sent to output: A B C ^ / D E * A C
Empty stack to output: A B C ^ / + D E * A C * –

COP 3502: Computer Science I (Note Set #13) Page 22 © Mark Llewellyn

What Happens if the Infix Expression
Contains Parentheses?

• Essentially, nothing would change except that we would treat
left parentheses (open parentheses) as an operator that is pushed
onto the stack until its corresponding right parenthesis (closed
parentheses) is encountered in the input string.

• Thus our algorithm would become:

If the operator is NOT a close parenthesis), then do this:

Continue popping off items off the stack and placing them in the
output expression until you hit an operator with lower precedence
than the current operator or until you hit an open parenthesis. At
this point, push the current operator onto the stack.

Else

Pop off all operators off the stack one by one, placing them in the
output expression until you hit the first(matching) open
parenthesis. When this occurs, pop off the open parenthesis and
discard both ()s.

COP 3502: Computer Science I (Note Set #13) Page 23 © Mark Llewellyn

Algorithm for Converting Infix to Postfix When
the Infix Expression Contains Parentheses

while there are more characters in the input
{

Read next symbol ch in the given infix expression.
If ch is an operand put it directly into the output.
If ch is an operator (i.e.*,/,+,-, ^, or ()
{

// check the item op at the top of the stack
while (more items in the stack && precedence(ch) <=precedence (op)
{

pop op and append it to the output.
// op becomes the next top element

}
push ch onto stack

}
}
pop any symbols remaining in the stack

only modification
necessary to
handle parentheses

COP 3502: Computer Science I (Note Set #13) Page 24 © Mark Llewellyn

Example Using the Algorithm to Convert Infix to Postfix
• Example: Infix expression: (((1 + 2) * 4) / 2) + (6 * 3 + 2 – 4 / 2)

Input char = (, operator, push (, stack[(]

Input char = (, operator, push (, stack [((]
Input char = (, operator, push (, stack [(((]
Input char = 1, operand sent to output: 1
Input char = +, operator, TOS = (so push +, stack [+ (((]
Input char = 2, operand sent to output: 1 2
Input char =), operator, pop stack until first “(“ is popped, output 1 2 +, stack [((]
Input char = *, operator, TOS = (so push *, stack [* ((]
Input char = 4, operand sent to output: 1 2 + 4
Input char =), operator, pop stack until first “(“ is popped, output 1 2 + 4 *, stack =
[(]
Input char = /, operator, TOS = (so push /, stack [/ (]
Input char = 2, operand sent to output 1 2 + 4 * 2
Input char =), operator, pop stack until first “(“ is popped, output 1 2 + 4 * 2 /,
stack empty []

COP 3502: Computer Science I (Note Set #13) Page 25 © Mark Llewellyn

Example Using the Algorithm to Convert Infix to Postfix
• Example: Infix expression: (((1 + 2) * 4) / 2) + (6 * 3 + 2 – 4 / 2)

• Continuing…
Input char = +, operator, stack empty, push +, stack [+]
Input char = (, operator, push (, stack [(+]
Input char = 6, operand sent to output 1 2 + 4 * 2 / 6
Input char = *, operator, push *, stack [* (+]
Input char = 3, operand sent to output 1 2 + 4 * 2 / 6 3
Input char = +, operator, pop *, output 1 2 + 4 * 2 / 6 3 *, push +, stack [+ (+]
Input char = 2, operand sent to output 1 2 + 4 * 2 / 6 3 * 2
Input char = –, operator, pop +, output 1 2 + 4 * 2 / 6 3 * 2 + , push –, stack [– (+]
Input char = 4, operand sent to output 1 2 + 4 * 2 / 6 3 * 2 + 4
Input char = /, operator, push /, stack [/ – (+]
Input char = 2, operand sent to output 1 2 + 4 * 2 / 6 3 * 2 + 4 2
Input char =), pop /, pop –, pop (, output 1 2 + 4 * 2 / 6 3 * 2 + 4 2 / –, stack [+]
End of input string, pop remainder of elements from the stack
Empty stack to output: 1 2 + 4 * 2 / 6 3 * 2 + 4 2 / – +

COP 3502: Computer Science I (Note Set #13) Page 26 © Mark Llewellyn

Evaluating a Postfix Expression
• The stack is also a very useful data structure for evaluating a

postfix expression.

• Consider the simple example of the postfix expression A B C *
+ assuming the values for A, B, and C are 2, 4, and 6
respectively. Given these values the expression evaluates to 26.

• When evaluating such an expression the stack is used to hold the
operands. So on the stack we would place the value for A, then
the value for B, followed by the value for C. Next, we encounter
the * operator, so we pop the top two elements from the stack
apply the operation and push back onto the stack this result (in
this case the value 24). Next, we encounter the + operator and
once again pop the top two elements from the stack which are 24
and 2 and apply the operation which produces the value 26
which is pushed back onto the stack. Since we are at the end of
the input expression, the top of the stack contains the result of
evaluating this expression.

COP 3502: Computer Science I (Note Set #13) Page 27 © Mark Llewellyn

Algorithm for Evaluating a Postfix Expression

// Each operator in a postfix string expression refers to the previous
// two operands in the expression
repeat for every symbol in the input expression
{

if the input symbol is an operand
push it onto the stack

if the input symbol is an operator
{ pop right-hand operand from stack

pop left-hand operand from stack
perform the operation indicated by the operand symbol
// this result becomes a subsequent operand
push the result onto the stack

}
}

COP 3502: Computer Science I (Note Set #13) Page 28 © Mark Llewellyn

Example Evaluating a Postfix Expression
• Example: Infix expression: 1 2 + 4 * 2 / 6 3 * 2 + 4 2 / – +

Input symbol = 1, push 1, stack [1]

Input symbol = 2, push 2, stack [2 1]

Input symbol = +, pop right operand 2, pop left operand 1, 1 + 2 = 3, push 3, stack [3]

Input symbol = 4, push 4, stack [4 3]

Input symbol = *, pop RO= 4, pop LO= 3, 3 * 4 = 12, push 12, stack [12]

Input symbol = 2, push 2, stack [2 12]

Input symbol = /, pop RO= 2, pop LO= 12, 12/2 = 6, push 6, stack [6]

Input symbol = 6, push 6, stack [6 6]

Input symbol = 3, push 3, stack [3 6 6]

Input symbol = *, pop RO = 3, pop LO = 6, 6 * 3 = 18, push 18, stack [18 6]

Input symbol = 2, push 2, stack [2 18 6]

Input symbol = +, pop RO = 2, pop LO = 18, 18+2 = 20, push 20, stack [20 6]

Input symbol = 4, push 4, stack [4 20 6]

COP 3502: Computer Science I (Note Set #13) Page 29 © Mark Llewellyn

Example Evaluating a Postfix Expression

• Example: Infix expression: 1 2 + 4 * 2 / 6 3 * 2 + 4 2 / – +

• Continuing…

Input symbol = 2, push 2, stack [2 4 20 6]

Input symbol = /, pop RO = 2, pop LO = 4, 4/2 = 2, push 2, stack [2 20 6]

Input symbol = –, pop RO = 2, pop LO = 20, 20 –2 = 18, push 18, stack [18 6]

Input symbol = +, pop RO = 18, pop LO = 6, 6 + 18 = 24, push 24, stack [24]

End of input, stack hold result of expression.

COP 3502: Computer Science I (Note Set #13) Page 30 © Mark Llewellyn

C Implementation for Stacks

/**
Arup Guha
2/17/04
COP 3502
Lecture Example: Implementation of a stack class.

***/

#include "stack.h"

// Creates a new empty stack struct and returns a pointer to it.
struct stackDT* NewStack() {

struct stackDT *s;
s = (struct stackDT*)malloc(sizeof(struct stackDT));
s->top = 0;
return s;

}

COP 3502: Computer Science I (Note Set #13) Page 31 © Mark Llewellyn

C Implementation for Stacks

// Pushes the character element onto the stack pointed to by stack.
// Assumes that the stack is NOT full.
void Push(struct stackDT *stack, char element) {

stack->values[stack->top] = element;
stack->top++;

}

// Pops the top character off the stack pointed to by stack.
// Assumes that the stack is NOT empty.
char Pop(struct stackDT *stack) {

char retval = stack->values[stack->top-1];
stack->top--;
return retval;

}

COP 3502: Computer Science I (Note Set #13) Page 32 © Mark Llewellyn

C Implementation for Stacks

// Returns the number of elements in the stack pointed to by stack.
int StackDepth(struct stackDT *stack) {

return stack->top;
}

// Returns 1 if no elements are in the stack pointed to by stack,
// 0 otherwise.
int StackIsEmpty(struct stackDT *stack) {

return (stack->top == 0);
}

// Returns 1 if the entire stack structure pointed to by stack is full,
// 0 otherwise.
int StackIsFull(struct stackDT *stack) {

return (stack->top == MAX_SIZE);
}

COP 3502: Computer Science I (Note Set #13) Page 33 © Mark Llewellyn

Header File for C Implementation of Stacks

/**
Arup Guha 2/17/04 COP 3502
Lecture Example: stack.h for a simple stack class. This stack stores characters.

**/
#ifndef _stack_h
#define _stack_h
#include <stdio.h>
#define MAX_SIZE 20

struct stackDT {
char values[MAX_SIZE];
int top;

};
struct stackDT* NewStack();
void Push(struct stackDT *stack, char element);
char Pop(struct stackDT *stack);
int StackDepth(struct stackDT *stack);
int StackIsEmpty(struct stackDT *stack);
int StackIsFull(struct stackDT *stack);
#endif

COP 3502: Computer Science I (Note Set #13) Page 34 © Mark Llewellyn

Sample Application Using Stacks

/**
Arup Guha 2/17/04 COP 3502
Class Example: A short program to utilize the stack class.

This program reads in a string and uses a
stack to print out the string in reverse order.

**/
#include "stack.h"

int main() {

char word[MAX_SIZE+1];
int i;
struct stackDT *my_stack;

// Create the new stack.
my_stack = NewStack();

COP 3502: Computer Science I (Note Set #13) Page 35 © Mark Llewellyn

Sample Application Using Stacks

// Read in a word from the user.
printf("Enter a word to reverse.\n");
scanf("%s", word);

// Push all the letters in the word onto the stack, one by one.
for (i=0; i<strlen(word); i++)

Push(my_stack, word[i]);

// Pop off each of these elements one by one, printing them out as
// they get popped until the stack is empty.
while (!StackIsEmpty(my_stack))

printf("%c",Pop(my_stack));

printf("\n");

return 0;
}

