
COP 3502: Computer Science I (Note Set #12) Page 1 © Mark Llewellyn

COP 3502: Computer Science I
Spring 2004

– Note Set 12 –
Searching and Sorting – Part 3

School of Electrical Engineering and Computer Science
University of Central Florida

Instructor : Mark Llewellyn
markl@cs.ucf.edu
CC1 211, 823-2790
http://www.cs.ucf.edu/courses/cop3502/spr04

COP 3502: Computer Science I (Note Set #12) Page 2 © Mark Llewellyn

QuickSort
• Quicksort is another recursive sorting algorithm.

• It picks an element from the list and uses it to
divide the list into two parts. It then places every
element which is smaller than the selected element
into the first part and every element which is larger
than the selected element is placed into the second
part.

• Before we look at Quicksort in any detail, we’ll
first examine a related problem that will help you
understand how and why Quicksort works.

COP 3502: Computer Science I (Note Set #12) Page 3 © Mark Llewellyn

Problem Related to QuickSort: Selection
• We’ve already examined the problem of searching a list for

a specific target element. There is a closely related
problem to this called selection.

• The selection problem is similar to the searching problem
except where searching is concerned with finding a specific
target element in the list, selection is concerned with
finding an element which exhibits a certain property, such
as the largest, smallest, or median value.

• In general, the selection problem solves the problem of
finding the kth largest value in a list.

COP 3502: Computer Science I (Note Set #12) Page 4 © Mark Llewellyn

Problem Related to QuickSort: Selection (cont.)

• One way to solve the selection problem would be to sort
the list in decreasing order, and then the kth largest value
would be in position k.

• However, this is a lot more work that we really need to do,
because we don’t really care about the values that are
smaller than the one we want.

• A related technique would be to find the largest value and
then move it to the last location in the list. If we again look
for the largest value in the list ignoring the value we
already found, we get the second largest value, which can
be moved to the next to the last location in the list. This
process would repeat until we had found the kth largest
value which would occur on the kth pass.

• The algorithm for this is shown on the next page.

COP 3502: Computer Science I (Note Set #12) Page 5 © Mark Llewellyn

FindKthLargest Algorithm

FindKthLargest (list, n, k)
// list the list of elements to look through
// n the number of elements in the list
// k the element to select

for (i = 1; i <= k, i++) {
largest = list[1];
largestLocation = 1;
for (j = 2, j <= n-(i-1); j++){

if listpj[> largest then {
largest = list[j];
largestLocation = j;

}
}
swap(list[n-(i-1)], list[largestLocation]);

}
end.

COP 3502: Computer Science I (Note Set #12) Page 6 © Mark Llewellyn

Complexity of FindKthLargest
• On the first pass a total of n-1 comparisons would be made.

The second pass would total n-2 comparisons, and so on.
On the kth pass a total of n-k comparisons would occur.

• This gives:

• Note that this equation also tells us that if k is greater than
n/2, it would be faster for look for the n-kth smallest value.

• This algorithm is reasonably efficient for values of k that
are close to either end of the list, but there is a more
efficient way to accomplish this process for values of k that
are close to the middle of the list. Can you think of a
technique that would accomplish this?

() ()∑
=

×=
−

−×=−
k

1i
nkO

2
1kk

knin

COP 3502: Computer Science I (Note Set #12) Page 7 © Mark Llewellyn

Complexity of FindKthLargest (cont.)

• Since we are only interested in the kth largest value, we
don’t really need to know the exact position for the values
that are the largest through the k-1st largest; we only need
to know that they are larger...their position in the list is
irrelevant.

• If we choose an element from the list and partition the list
into two distinct parts, one containing those elements that
are larger than the chosen element and the other containing
those elements that are smaller than the chosen element.

• The chosen element will wind up in some position p in the
list. This will mean that the chosen element is the pth

largest element in the list.

COP 3502: Computer Science I (Note Set #12) Page 8 © Mark Llewellyn

Complexity of FindKthLargest (cont.)

• To accomplish this partitioning, we’ll need to compare the
chosen element with all of the other elements, requiring n-1
comparisons.

• If we are lucky and p = k, then we’re done. If k < p, then
we need a smaller value to partition on (a smaller p) and
we’ll repeat the process on a second partitioning. If k > p,
then we need a larger value to partition on (a larger p) and
we’ll use the first partition, but we’ll need to reduce the
value of k by the number of values we’ve eliminated in the
larger partition.

• The following few pages illustrates this technique.

COP 3502: Computer Science I (Note Set #12) Page 9 © Mark Llewellyn

Complexity of FindKthLargest (cont.)

6 23 44 88 9 13 46 5595

Nomenclature for list elements

1st largest

2nd largest

3rd largest

pth largest.

In this case p=k = 5 This
element is positioned
k elements from the high
end of the list.

(n-1)th largest

(n-2)th largest

nth largest

COP 3502: Computer Science I (Note Set #12) Page 10 © Mark Llewellyn

Complexity of FindKthLargest (cont.)

6 23 44 88 9 13 46 55

Initial List

95

chosen element

6 9 13 44 23 55 95 88

First partitioning

46

We made a good “guess” and the chosen element winds up
as the 7 th largest element which is what we wanted.
Element 55 winds up in 7th position, so k = p =7.

Suppose we are looking for the 7th largest element (k= 7)

chosen element

COP 3502: Computer Science I (Note Set #12) Page 11 © Mark Llewellyn

Complexity of FindKthLargest (cont.)

6 23 44 88 9 13 46 55

Initial List

95

chosen element

6 9 13 23 44 55 95 88

First partitioning

46
We made a poor “guess” and the chosen element winds up
as the 3 rd largest element (p = 3), which is smaller than we
wanted. Since k > p, we’ll do a second partitioning of the
larger numbers.

Suppose we are looking for the 6th largest element (k= 6)

6 9 13 23 46 55 95 88

Second partitioning

44

We made a good “guess” this time
and the chosen element winds up
as the 6 th largest element. Since p=k=6,
we are done.

ignore these elements this time

chosen element

chosen element

COP 3502: Computer Science I (Note Set #12) Page 12 © Mark Llewellyn

Complexity of FindKthLargest (cont.)

6 23 44 88 9 13 46 55

Initial List

95

chosen element

Suppose we are looking for the 2nd largest element

6 9 23 44 46 88 95 55

First partitioning

13

We made a poor “guess” and the chosen
element winds up as the 6 th largest element
(p=6) which is larger than what we wanted.
Since k < p, we’ll repartition, but select an
element smaller than 46.

chosen element

6 9 13 44 46 88 95 55

Second partitioning

23

We made a good “guess” the second time and
the chosen element winds up as the 2nd largest
element (p=2) which is what we wanted.

new chosen
element

ignore these elements this time

COP 3502: Computer Science I (Note Set #12) Page 13 © Mark Llewellyn

Recursive FindKthLargest Algorithm

KthLargestRecursive (list, n, k)
// list the list of elements to look through
// start the index of the first element to consider
// end the index of the last element to consider
// k the element of the list we want

if start < end {
Partition(list, start, end, middle);
if middle = k

return list[middle];
else

if k < middle
return KthLargestRecursive(list, middle+1, end, k);

else
return(KthLargestRecursive(list, start, middle-1, k-middle);

}
end.

COP 3502: Computer Science I (Note Set #12) Page 14 © Mark Llewellyn

Complexity of KthLargestRecursive
• If we assume that on average the partitioning

process will divide the list into two roughly equal
halves, then approximately:

n + n/2 + n/4 + n/8 + … + 1

will be be necessary.

• This is about 2n comparisons. So the process is
linear and independent of k.

COP 3502: Computer Science I (Note Set #12) Page 15 © Mark Llewellyn

Quicksort
• Quicksort is another recursive sorting algorithm.

• It picks an element from the list, called the pivot element,
and uses it to divide the list into two parts. The first part
contains all of the elements that are smaller than the pivot
element and the second part of the list contains all of the
elements that are larger than the pivot element.

• This process is similar to the one we just saw utilized when
searching for the kth largest element in a list. The only
difference is that quicksort applies the technique
recursively to both parts of the list.

• Quicksort is a very efficient sort on average, although its
worst case performance is identical to insertion sort and
bubble sort at O(n2).

COP 3502: Computer Science I (Note Set #12) Page 16 © Mark Llewellyn

Quicksort (cont.)

• Once the pivot element is selected (more on this later) the
list is rearranged so that elements smaller than the pivot
element are moved before it and elements larger than it are
moved after the pivot element.

• The elements in each of the two parts of the list are not put
in order.

• If the pivot element winds up in location i, all we know for
certain is that elements in locations 1 through i-1 are
smaller than the pivot element and those in locations i+1
through n are larger than the pivot element.

• Once this is done, quicksort is called recursively on these
two parts.

COP 3502: Computer Science I (Note Set #12) Page 17 © Mark Llewellyn

Quicksort (cont.)

• If quicksort is called with a list containing one element, it
does nothing (base case) because a one-element list is
sorted by default.

• Because the determination of the pivot element and the
movement of the elements into the proper section do all the
work, the main quicksort algorithm just needs to keep track
of the bounds of these two sections of the list.

• Further, because splitting the list into two parts is where the
keys are moved around, all the sorting work is done on the
way down in the recursive process. IMPORTANT
NOTE: This is exactly opposite of merge sort, which does
its work on the way back up in the recursive process.

• The algorithm for quicksort is shown on the next page.

COP 3502: Computer Science I (Note Set #12) Page 18 © Mark Llewellyn

Quicksort Algorithm

Quicksort (list, first, last)
// list the list of elements to be sorted
// first the index of the first element in the part of the list to sort
// last the index of the last element to in the part of the list to sort.

if first < last {
pivot = PivotList(list, first, last);
Quicksort(list, first, pivot-1);
Quicksort(list, pivot+1, last);

}
end.

COP 3502: Computer Science I (Note Set #12) Page 19 © Mark Llewellyn

PivotList Algorithm

PivotList (list, first, last)
// list the list of elements to work with
// first the index of the first element
// last the index of the last element

pivotvalue = list[first];
pivotpoint = first;
for (index = first+1, index <= last, index++) {

if list[index] < pivotvalue {
pivotpoint = pivotpoint+1;
swap(list[pivotpoint+1, list[index]);

}
}
//move pivot value into correct place in list
swap(list[first], list[pivotpoint]);
return pivotpoint;
end.

COP 3502: Computer Science I (Note Set #12) Page 20 © Mark Llewellyn

Relationship between indices and element in
Algorithm PivotList

pivot < pivot >= pivot unknown

pivot point

first last

index

COP 3502: Computer Science I (Note Set #12) Page 21 © Mark Llewellyn

Splitting the List for Quicksort
• There are at least two versions of the PivotList function.

• The version shown on page 19 is easy to program and
understand . There is another version which is more
complicated to write but is faster than the version on page
19. I’ll show you this version at the end of this section of
notes, but we’ll do our analysis of the quicksort algorithm
using the simple partitioning algorithm from page 19.

• The diagram on page 20 illustrates how the PivotList
algorithm partitions the list into two distinct sublists. Note
that this simple algorithm simply chooses the first element
in the list as the pivot element.

COP 3502: Computer Science I (Note Set #12) Page 22 © Mark Llewellyn

Splitting the List for Quicksort (cont.)

• Since the first element in the list is selected as the pivot
element, the location of the pivot element is initially set to
1.

• The algorithm then moves through the list comparing this
pivot element to the rest of the elements. Whenever it
finds an element that is smaller than the pivot element, it
will increment the pivot point and then swap this element
into the pivot point location.

• After some of the elements have been compared to the
pivot inside the loop, there will be four basic parts to the
list as shown by the diagram on page 20.

COP 3502: Computer Science I (Note Set #12) Page 23 © Mark Llewellyn

Splitting the List for Quicksort (cont.)

• The first part of the list is simply the pivot element in the
first location.

• The second part of the list is from location first+1 through
the pivot location and will consist of all the elements that
have been compared which are smaller than the pivot
element.

• The third part of the list is from the location after the pivot
location through the loop index and will consist of all
compared elements which are larger than the pivot element.

• The fourth part of the list consists of all the elements which
have not yet been compared.

• These four parts are illustrated in the diagram on page 20.

COP 3502: Computer Science I (Note Set #12) Page 24 © Mark Llewellyn

Worst Case Analysis for Quicksort
• When PivotList is called with a list of n elements, it does n-

1 comparisons as it compares the pivot value with every
other element in the list.

• Since we know that quicksort is a divide and conquer
algorithm, we would be correct in assuming that the best
case performance would occur when PivotList creates two
equal sized parts to the original list.

• The worst case performance would then logically occur
when the two parts of the list are of drastically different
sizes. The worst case occurs when one part has no
elements and the other part contains n-1 elements.

– If the same thing were to occur each time we partitioned the list we
would remove only one element from the list on each recursive call
(the pivot element).

COP 3502: Computer Science I (Note Set #12) Page 25 © Mark Llewellyn

Worst Case Analysis for Quicksort (cont.)

• Given this worst case scenario, PivotList would do a
number of comparisons given by:

• What original ordering of the elements would cause this
sort of behavior?

– If each pass chooses the first element, that element must be the
smallest (or largest). A list that is already sorted is one
arrangement that would cause this worst case performance.

• All of the other sorts that we have seen, the worst case and
average cases have been about the same (equal
asymptotically), but as we are about to see, this is not the
case for quicksort.

() () ()∑
=

−
=−=

n

2i 2
1nn

1inworst

COP 3502: Computer Science I (Note Set #12) Page 26 © Mark Llewellyn

Average Case Analysis for Quicksort

• All of the work of quicksort is done by PivotList, so here is
where we need to look for the average case. It is possible
for each of the n locations in the list to be the location of
the pivot element. So we need to see what happens for
each of these possibilities and average the results.

• When looking at the worst case, we saw that for a list of n
elements, n-1 comparisons were necessary to divide the
list. There is no work to put the lists back together. Also
notice that when PivotList returns a value of p, quicksort is
called recursively with lists of p-1 and n-p elements. Our
average case needs to look at all n possible values for p,
which gives:

() () () ()[]

00average1average

2nforinaverage1iaverage
n
1

1nnaverage
n

1i

==

≥









−+−+−= ∑

=

)()(

COP 3502: Computer Science I (Note Set #12) Page 27 © Mark Llewellyn

Average Case Analysis for Quicksort (cont.)

• If you look closely at the summation, you will
notice the first term is used with values from 0
through n-1 and the second term is used with
values from n-1 down to 0. This means that the
summation adds up every value of the average
from 0 to n-1 twice. This leads to the following
simplification:

() () ()

00average1average

2nforiaverage2
n
1

1nnaverage
n

1i

==

≥









+−= ∑

=

)()(

COP 3502: Computer Science I (Note Set #12) Page 28 © Mark Llewellyn

Average Case Analysis for Quicksort (cont.)

• This is a very complicated form of a recurrence relation
because it depends on not just one smaller value of the
average, but rather on every smaller value for the average!

• There are two basic ways to solve such a recurrence
relation: (1) come up with an educated guess for the answer
and then prove that this answer does satisfy the recurrence
relation, or (2) look at the equations for both average(n)
and average(n-1). Since these two equations differ by only
a few terms: Computing average(n) × n and average(n-
1)×(n-1) gets rid of the fractions which gives:

COP 3502: Computer Science I (Note Set #12) Page 29 © Mark Llewellyn

Average Case Analysis for Quicksort (cont.)

() () () ()∑ ∑
−

=

−

=
+−×+−=+−=×

1n

0i

2n

0i
iaverage21naverage2n1niaverage2n1nnnaverage)()(

() () ()() ∑
−

=
+−−=−×−

2n

0i
iaverage21n2n1n1naverage)(

Subtracting the second equation from the first and simplifying gives:

()
2n21naverage21n1naveragennaverage

2n3nnn1naverage21n1naveragennaverage

1n2nn1n1naverage21n1naveragennaverage
22

−+−×=−×−−×
+−−−+−×=−×−−×

−−−−+−×=−×−−×

)()()()(
)()()()(

))(()()()()()(

Adding average(n-1)× (n-1) to both sides, we get:

() 2n21n21naveragennaverage
2n21n1naverage1naverage2nnaverage

−+−+×−=×
−+−×−+−×=×

)()(
)()()()(

COP 3502: Computer Science I (Note Set #12) Page 30 © Mark Llewellyn

Average Case Analysis for Quicksort (cont.)

This gives our final recurrence relation:

()

00average1average
n

2n21naverage1n
naverage

==

−+−×+
=

)()(

)(
)(

Solving this is not too difficult but does require care because all of the terms on
the right-hand side of the equation. If you work through all of the details
(we’re not going to!), you’ll see the final result is:

() n1n41naverage 2log.)(+≈

COP 3502: Computer Science I (Note Set #12) Page 31 © Mark Llewellyn

Summary of Quicksort

• Quicksort is the fastest known comparison based
sorting algorithm.

O(n2)

O(n log2n)

O(n log2n)

worst case

average case

best case

Quicksort

COP 3502: Computer Science I (Note Set #12) Page 32 © Mark Llewellyn

Alternative PivotList Function
• A faster alternative for the PivotList function would be to

have two indices into the list. The first moves up from the
low end of the list and the second moves down from the
high end of the list.

• The main loop of the algorithm will advance the lower
index until a greater value than the pivot element is found,
and the upper index is moved until a value less than the
pivot element is found. When this situation occurs these
two elements are swapped. The process repeats until the
two indices cross over each other.

• These inner loops are very fast because the overhead of
checking for the end of the list is eliminated, but one
problem is that an extra swap occurs when the indices
cross.

COP 3502: Computer Science I (Note Set #12) Page 33 © Mark Llewellyn

PivotList Algorithm

FastPivotList (list, first, last)
// list the list of elements to work with
// first the index of the first element
// last the index of the last element

pivotvalue = list[first];
lower = first;
upper = last +1;
do

do upper = upper–1 until list[upper] <= pivotvalue
do lower = lower+1 until list[lower] >= pivotvalue
swap(list[upper], list[lower])

until lower >= upper
//undo the extra exchange
swap(list[upper], list[lower]);
//move pivot point into correct location
swap(list[first], list[upper])
return upper
end.

This algorithm requires
that the list have one
extra location to hold
a special sentinel value
which is larger than
all of the valid key
fields in the list.

COP 3502: Computer Science I (Note Set #12) Page 34 © Mark Llewellyn

C Implementation of Quicksort
// Code to demonstrate the Partition algorithm.
#include <stdio.h>
#include <stdlib.h>
#include <time.h>

void create(int *values, int n);
int partition(int *values, int start, int end);
void swap(int *a, int *b);
void print(int *values, int n);

int main() {
int *nums, mid;

srand(time(0));
create(nums, 30);
mid = partition(nums, 0, 29);

printf("The index of the partition element is %d\n", mid);
print(nums, 30);

}

COP 3502: Computer Science I (Note Set #12) Page 35 © Mark Llewellyn

C Implementation of Quicksort (cont.)

void create(int *values, int n) {
int i;
values = malloc(n*sizeof(int));
for (int i=0; i<n; i++)

values[i] = rand()%100;
}

}

void swap(int *a, int *b) {
int temp = *a;
*a = *b;
*b = temp;

}

void print(int *values, int n) {
int i;
for (i=0; i<n; i++) printf("%d ", values[i]));
printf("\n");

}

COP 3502: Computer Science I (Note Set #12) Page 36 © Mark Llewellyn

C Implementation of Quicksort (cont.)

int partition(int *values, int start, int end) {

// Line up left and right counters.
int i = start;
int j = end;

while (i < j) {
// Move left counter, then the right counter.
while (i <= end && values[i] <= values[start])

i++;
while (values[j] > values[start])

j--;
// Swap out of place values.
if (i < j)

swap(values+i, values+j);
}

swap(values+start, values+j); // Swap in partition element.
return j;

}

COP 3502: Computer Science I (Note Set #12) Page 37 © Mark Llewellyn

Alternative Pivot Determination Schemes

• Since it's clearly important to get a reasonable "split" when
doing a quicksort, there are many different techniques that
can be used to ensure a reasonable split of values in the
partition step. (We won't look at the implementations, just
the ideas. But, you should be able to implement these ideas
in code if you ever had to.)

• One technique is to randomly pick three elements in the list
to be sorted as candidates for the partition element. Then,
choose the middle value of these three elements to be the
partition.

– There is some extra expense here - picking three elements and then
doing three comparisons to determine the median of the values, but
hopefully, if the array being sorted is large enough, this extra
expense will be small enough compared to the gains of a better
partition element.

COP 3502: Computer Science I (Note Set #12) Page 38 © Mark Llewellyn

Alternative Pivot Determination Schemes (cont.)

• Clearly, you would not want to do this if you were only sorting
10 or 20 values. In fact, quicksort is most efficient if you
implement some simple sort such as insertion sort when you get
down to a few elements, say 10 or 20. (This would be your
terminating condition in the recursive method.)

• A more precise technique is to pick 5 random elements,
determine the median of these five elements and then pick that
as the partition element. This can be done in a maximum of 7
comparisons. This will generally give you a better partition
element than the median of three technique. Depending on the
size of the array being sorted, this extra cost may be worth it.

• The most precise technique would be to determine the median of
all elements in the list to be sorted. However, the improvement
in run-time rarely justifies the expense of this technique when
compared with the median of three or median of five techniques.

