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QuickSort
• Quicksort is another recursive sorting algorithm.  

• It picks an element from the list and uses it to 
divide the list into two parts.  It then places every 
element which is smaller than the selected element 
into the first part and every element which is larger 
than the selected element is placed into the second 
part.

• Before we look at Quicksort in any detail, we’ll 
first examine a related problem that will help you 
understand how and why Quicksort works.
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Problem Related to QuickSort: Selection
• We’ve already examined the problem of searching a list for 

a specific target element.  There is a closely related 
problem to this called selection.

• The selection problem is similar to the searching problem 
except where searching is concerned with finding a specific 
target element in the list, selection is concerned with 
finding an element which exhibits a certain property, such 
as the largest,  smallest, or median value.

• In general, the selection problem solves the problem of 
finding the kth largest value in a list.
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Problem Related to QuickSort: Selection (cont.)

• One way to solve the selection problem would be to sort 
the list in decreasing order, and then the kth largest value 
would be in position k.

• However, this is a lot more work that we really need to do, 
because we don’t really care about the values that are 
smaller than the one we want.

• A related technique would be to find the largest value and 
then move it to the last location in the list.  If we again look
for the largest value in the list ignoring the value we 
already found, we get the second largest value, which can 
be moved to the next to the last location in the list.  This 
process would repeat until we had found the kth largest 
value which would occur on the kth pass.

• The algorithm for this is shown on the next page.
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FindKthLargest Algorithm

FindKthLargest (list, n, k)
// list        the list of elements to look through
// n          the number of elements in the list
// k the element to select

for (i = 1; i <= k, i++) {
largest = list[1];
largestLocation = 1;
for ( j = 2, j <= n-(i-1); j++){

if listpj[ > largest then {
largest = list[j];
largestLocation = j;

}
}
swap( list[n-(i-1)], list[largestLocation]);

}
end.
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Complexity of FindKthLargest
• On the first pass a total of n-1 comparisons would be made.  

The second pass would total n-2 comparisons, and so on.  
On the kth pass a total of n-k comparisons would occur.

• This gives:

• Note that this equation also tells us that if k is greater than 
n/2, it would be faster for look for the n-kth smallest value.

• This algorithm is reasonably efficient for values of k that 
are close to either end of the list, but there is a more 
efficient way to accomplish this process for values of k that 
are close to the middle of the list.  Can you think of a 
technique that would accomplish this?
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Complexity of FindKthLargest (cont.)

• Since we are only interested in the kth largest value, we 
don’t really need to know the exact position for the values 
that are the largest through the k-1st largest; we only need 
to know that they are larger...their position in the list is 
irrelevant. 

• If we choose an element from the list and partition the list 
into two distinct parts, one containing those elements that 
are larger than the chosen element and the other containing 
those elements that are smaller than the chosen element.  

• The chosen element will wind up in some position p in the 
list.  This will mean that the chosen element is the pth

largest element in the list.
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Complexity of FindKthLargest (cont.)

• To accomplish this partitioning, we’ll need to compare the 
chosen element with all of the other elements, requiring n-1
comparisons.

• If we are lucky and p = k, then we’re done.  If k < p, then 
we need a smaller value to partition on (a smaller p) and 
we’ll repeat the process on a second partitioning.  If k > p, 
then we need a larger value to partition on (a larger p) and 
we’ll use the first partition, but we’ll need to reduce the 
value of k by the number of values we’ve eliminated in the 
larger partition.

• The following few pages illustrates this technique.
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Complexity of FindKthLargest (cont.)

6 23 44 88 9 13 46 5595

Nomenclature for list elements

1st largest

2nd largest

3rd largest

pth largest.

In this case p=k = 5  This 
element is positioned
k elements from the high
end of the list.

(n-1)th largest

(n-2)th largest

nth largest
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Complexity of FindKthLargest (cont.)

6 23 44 88 9 13 46 55

Initial List

95

chosen element

6 9 13 44 23 55 95 88

First partitioning

46

We made a good “guess” and the chosen element winds up
as the 7 th largest element which is what we wanted. 
Element 55 winds up in 7th position, so k = p =7.

Suppose we are looking for the 7th largest element (k= 7)

chosen element
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Complexity of FindKthLargest (cont.)

6 23 44 88 9 13 46 55

Initial List

95

chosen element

6 9 13 23 44 55 95 88

First partitioning

46
We made a poor “guess” and the chosen element winds up
as the 3 rd largest element (p = 3),  which is smaller than we
wanted.  Since k > p, we’ll do a second partitioning of the
larger numbers.

Suppose we are looking for the 6th largest element (k= 6)

6 9 13 23 46 55 95 88

Second partitioning

44

We made a good “guess” this time
and the chosen element winds up
as the 6 th largest element.  Since p=k=6, 
we are done.

ignore these elements this time

chosen element

chosen element
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Complexity of FindKthLargest (cont.)

6 23 44 88 9 13 46 55

Initial List

95

chosen element

Suppose we are looking for the 2nd largest element

6 9 23 44 46 88 95 55

First partitioning

13

We made a poor “guess” and the chosen
element winds up as the 6 th largest element
(p=6) which is larger than what we wanted. 
Since k < p, we’ll repartition, but select an
element smaller than 46. 

chosen element

6 9 13 44 46 88 95 55

Second partitioning

23

We made a good “guess” the second time and
the chosen element winds up as the 2nd largest
element (p=2) which is what we wanted. 

new chosen
element

ignore these elements this time
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Recursive FindKthLargest Algorithm

KthLargestRecursive (list, n, k)
// list        the list of elements to look through
// start     the index of the first element to consider
// end      the index of the last element to consider
// k          the element of the list we want

if start < end {
Partition( list, start, end, middle);
if middle = k 

return list[middle];
else

if k < middle 
return KthLargestRecursive( list, middle+1, end, k);

else
return(KthLargestRecursive( list, start, middle-1, k-middle);

}
end.
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Complexity of KthLargestRecursive
• If we assume that on average the partitioning 

process will divide the list into two roughly equal 
halves, then approximately:

n + n/2 + n/4 + n/8 + … + 1

will be be necessary.

• This is about 2n comparisons.  So the process is 
linear and independent of k.
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Quicksort
• Quicksort is another recursive sorting algorithm.

• It picks an element from the list, called the pivot element,  
and uses it to divide the list  into two parts.  The first part 
contains all of the elements that are smaller than the pivot 
element and the second part of the list contains all of the 
elements that are larger than the pivot element.

• This process is similar to the one we just saw utilized when 
searching for the kth largest element in a list.  The only 
difference is that quicksort applies the technique 
recursively to both parts of the list.

• Quicksort is a very efficient sort on average, although its 
worst case performance is identical to insertion sort and 
bubble sort at O(n2).
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Quicksort (cont.)

• Once the pivot element is selected (more on this later) the 
list is rearranged so that elements smaller than the pivot 
element are moved before it and elements larger than it are 
moved after the pivot element.

• The elements in each of the two parts of the list are not put  
in order.

• If the pivot element winds up in location i, all we know for 
certain is that elements in locations 1 through i-1 are  
smaller than the pivot element and those in locations i+1
through n are larger than the pivot element.

• Once this is done, quicksort is called recursively on these 
two parts.
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Quicksort (cont.)

• If quicksort is called with a list containing one element, it 
does nothing (base case) because a one-element list is 
sorted by default.

• Because the determination of the pivot element and the 
movement of the elements into the proper section do all the 
work, the main quicksort algorithm just needs to keep track 
of the bounds of these two sections of the list.

• Further, because splitting the list into two parts is where the 
keys are moved around, all the sorting work is done on the 
way down in the recursive process.   IMPORTANT 
NOTE: This is exactly opposite of merge sort, which does 
its work on the way back up in the recursive process.

• The algorithm for quicksort is shown on the next page.
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Quicksort Algorithm

Quicksort (list, first, last)
// list        the list of elements to be sorted
// first      the index of the first element in the part of the list to sort
// last       the index of the last element to in the part of the list to sort.

if first < last {
pivot = PivotList( list, first, last);
Quicksort( list, first, pivot-1);
Quicksort( list, pivot+1, last);

}
end.
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PivotList Algorithm

PivotList (list, first, last)
// list        the list of elements to work with
// first      the index of the first element 
// last       the index of the last element 

pivotvalue = list[first];
pivotpoint = first; 
for (index = first+1, index <= last, index++) {

if list[index] < pivotvalue {
pivotpoint = pivotpoint+1;
swap( list[pivotpoint+1, list[index]);

}
}
//move pivot value into correct place in list
swap( list[first], list[pivotpoint]);
return pivotpoint;
end.
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Relationship between indices and element in 
Algorithm PivotList

pivot < pivot >= pivot unknown

pivot point

first last

index
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Splitting the List for Quicksort
• There are at least two versions of the PivotList function.

• The version shown on page 19 is easy to program and 
understand .  There is another version which is more 
complicated to write but is faster than the version on page 
19.  I’ll show  you this version at the end of this section of 
notes, but we’ll do our analysis of the quicksort algorithm 
using the simple partitioning algorithm from page 19.

• The diagram on page 20 illustrates how the PivotList 
algorithm partitions the list into two distinct sublists.  Note 
that this simple algorithm simply chooses the first element 
in the list as the pivot element.
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Splitting the List for Quicksort (cont.)

• Since the first element in the list is selected as the pivot 
element, the location of the pivot element is initially set to 
1.  

• The algorithm then moves through the list comparing this 
pivot element to the rest of the elements.  Whenever  it 
finds an element that is smaller than the pivot element, it 
will increment the pivot point and then swap this element 
into the pivot point location. 

• After some of the elements have been compared to the 
pivot inside the loop, there will be four basic parts to the 
list as shown by the diagram on page 20.
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Splitting the List for Quicksort (cont.)

• The first part of the list is simply the pivot element in the 
first location.

• The second part of the list is from location first+1 through 
the pivot location and will consist of all the elements that 
have been compared which are smaller than the pivot 
element.  

• The third part of the list is from the location after the pivot 
location through the loop index and will consist of all 
compared elements which are larger than the pivot element.

• The fourth part of the list consists of all the elements which 
have not yet been compared.

• These four parts are illustrated in the diagram on page 20.
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Worst Case Analysis for Quicksort
• When PivotList is called with a list of n elements, it does n-

1 comparisons as it compares the pivot value with every 
other element in the list.

• Since we know that quicksort is a divide and conquer 
algorithm, we would be correct in assuming that the best 
case performance would occur when PivotList creates two 
equal sized parts to the original list.

• The worst case performance would then logically occur 
when the two parts of the list are of drastically different 
sizes.  The worst case occurs when one part has no 
elements and the other part contains n-1 elements.

– If the same thing were to occur each time we partitioned the list we 
would remove only one element from the list on each recursive call 
(the pivot element).
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Worst Case Analysis for Quicksort (cont.)

• Given this worst case scenario, PivotList would do a 
number of comparisons given by:

• What original ordering of the elements would cause this 
sort of behavior?

– If each pass chooses the first element, that element must be the
smallest (or largest).  A list that is already sorted is one 
arrangement that would cause this worst case performance.  

• All of the other sorts that we have seen, the worst case and 
average cases have been about the same (equal 
asymptotically), but as we are about to see, this is not the 
case for quicksort.
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Average Case Analysis for Quicksort

• All of the work of quicksort is done by PivotList, so here is 
where we need to look for the average case.  It is possible 
for each of the n locations in the list to be the location of 
the pivot element.  So we need to see what happens for 
each of these possibilities and average the results.

• When looking at the worst case, we saw that for a list of n
elements, n-1 comparisons were necessary to divide the 
list.  There is no work to put the lists back together.  Also 
notice that when PivotList returns a value of p, quicksort is 
called recursively with lists of p-1 and n-p elements.  Our 
average case needs to look at all n possible values for p, 
which gives:
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Average Case Analysis for Quicksort (cont.)

• If you look closely at the summation, you will 
notice the first term is used with values from 0 
through n-1 and the second term is used with 
values from n-1 down to 0.  This means that the 
summation adds up every value of the average 
from 0 to n-1 twice.  This leads to the following 
simplification:
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Average Case Analysis for Quicksort (cont.)

• This is a very complicated form of a recurrence relation 
because it depends on not just one smaller value of the 
average, but rather on every smaller value for the average!

• There are two basic ways to solve such a recurrence 
relation: (1) come up with an educated guess for the answer 
and then prove that this answer does satisfy the recurrence 
relation, or (2) look at the equations for both average(n) 
and average(n-1).  Since these two equations differ by only 
a few terms:  Computing average(n) × n and average(n-
1)×(n-1) gets rid of the fractions which gives:
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Average Case Analysis for Quicksort (cont.)
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Subtracting the second equation from the first and simplifying gives:
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Average Case Analysis for Quicksort (cont.)

This gives our final recurrence relation:
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Solving this is not too difficult but does require care because all of the terms on
the right-hand side of the equation.  If you work through all of the details
(we’re not going to!), you’ll see the final result is: 
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Summary of Quicksort

• Quicksort is the fastest known comparison based 
sorting algorithm.

O(n2)

O(n log2n)

O(n log2n)

worst case

average case

best case

Quicksort
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Alternative PivotList Function
• A faster alternative for the PivotList function would be to 

have two  indices into the list.  The first moves up from the 
low end of the list and the second moves down from the 
high end of the list.

• The main loop of the algorithm will advance the lower 
index until a greater value than the pivot element is found, 
and the upper index is moved until a value less than the 
pivot element is found.  When this situation occurs these 
two elements are swapped.  The process repeats until the 
two indices cross over each other.

• These inner loops are very fast because the overhead of 
checking for the end of the list is eliminated, but one 
problem is that an extra swap occurs when the indices 
cross.
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PivotList Algorithm

FastPivotList (list, first, last)
// list        the list of elements to work with
// first      the index of the first element 
// last       the index of the last element 

pivotvalue = list[first];
lower = first; 
upper = last +1;
do

do upper = upper–1 until list[upper] <= pivotvalue
do lower = lower+1 until list[lower] >= pivotvalue
swap( list[upper], list[lower])

until lower >= upper
//undo the extra exchange
swap( list[upper], list[lower]);
//move pivot point into correct location
swap( list[first], list[upper])
return upper
end.

This algorithm requires
that the list have one
extra location to hold
a special sentinel value
which is larger than
all of the valid key
fields in the list.
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C Implementation of Quicksort
// Code to demonstrate the Partition algorithm.
#include <stdio.h>
#include <stdlib.h>
#include <time.h>

void create(int *values, int n );
int partition(int *values, int start, int end);
void swap(int *a, int *b);
void print(int *values, int n);

int main() {
int *nums, mid;

srand(time(0));
create(nums, 30);
mid = partition(nums, 0, 29);

printf("The index of the partition element is %d\n", mid);
print(nums, 30);

}
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C Implementation of Quicksort (cont.)

void create(int *values, int n ) {
int i;
values = malloc(n*sizeof(int));
for (int i=0; i<n; i++)

values[i] = rand()%100;
}

}

void swap(int *a, int *b) {
int temp = *a;
*a = *b;
*b = temp;

}  

void print(int *values, int n) {
int i;
for (i=0; i<n; i++) printf("%d ", values[i]));
printf("\n");

}
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C Implementation of Quicksort (cont.)

int partition(int *values, int start, int end) {

// Line up left and right counters.
int i = start;
int j = end;

while (i < j) {
// Move left counter, then the right counter.
while (i <= end && values[i] <= values[start])

i++;
while (values[j] > values[start])

j--;
// Swap out of place values.
if (i < j) 

swap(values+i, values+j);
}

swap(values+start, values+j); // Swap in partition element.
return j;

}
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Alternative Pivot Determination Schemes

• Since it's clearly important to get a reasonable "split" when 
doing a quicksort, there are many different techniques that 
can be used to ensure a reasonable split of values in the 
partition step. (We won't look at the implementations, just 
the ideas.  But, you should be able to implement these ideas 
in code if you ever had to.)

• One technique is to randomly pick three elements in the list 
to be sorted as candidates for the partition element. Then, 
choose the middle value of these three elements to be the 
partition.

– There is some extra expense here - picking three elements and then 
doing three comparisons to determine the median of the values, but 
hopefully, if the array being sorted is large enough, this extra
expense will be small enough compared to the gains of a better 
partition element. 
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Alternative Pivot Determination Schemes (cont.)

• Clearly, you would not want to do this if you were only sorting 
10 or 20 values. In fact, quicksort is most efficient if you 
implement some simple sort such as insertion sort when you get 
down to a few elements, say 10 or 20. (This would be your 
terminating condition in the recursive method.)

• A more precise technique is to pick 5 random elements, 
determine the median of these five elements and then pick that 
as the partition element. This can be done in a maximum of 7 
comparisons. This will generally give you a better partition 
element than the median of three technique. Depending on the 
size of the array being sorted, this extra cost may be worth it.

• The most precise technique would be to determine the median of 
all elements in the list to be sorted.  However, the improvement
in run-time rarely justifies the expense of this technique when 
compared with the median of three or median of five techniques.


