
COP 3502: Computer Science I (Note Set #11) Page 1 © Mark Llewellyn

COP 3502: Computer Science I
Spring 2004

– Note Set 11 –
Searching and Sorting – Part 2

School of Electrical Engineering and Computer Science
University of Central Florida

Instructor : Mark Llewellyn
markl@cs.ucf.edu
CC1 211, 823-2790
http://www.cs.ucf.edu/courses/cop3502/spr04

COP 3502: Computer Science I (Note Set #11) Page 2 © Mark Llewellyn

Bubble Sort
• The general idea with the bubble sort is to allow

the smaller elements to move toward the “top” (i.e.
front) of the list while larger elements move
toward the “bottom” (i.e., rear) of the list.

• There are several different variants of the bubble
sort, we’ll look only at one of them as they all
have the same asymptotic behavior.

COP 3502: Computer Science I (Note Set #11) Page 3 © Mark Llewellyn

Bubble Sort Algorithm

BubbleSort (list, n)
// list the elements to be sort
// n the number of elements in the list

numberofPairs = n;
swappedElements = true;
while swappedElements do

numberofPairs = numberofPairs – 1;
swappedElements = false;
for (i = ; i <= numberofPairs; i++){

if (list[i] > list[i+1]){
swap(list[i], list[i+1]);
swappedElements = true;

}
endfor;

endwhile;
end.

COP 3502: Computer Science I (Note Set #11) Page 4 © Mark Llewellyn

Bubble Sort Algorithm
• The bubble sort algorithm makes a number of passes through the

list of elements. On each pass it compares adjacent element
values. If they are out of order, they’re positions in the list are
reversed via a swap.

• Each pass starts at the beginning of the list and compares the
elements in locations 1 and 2, then the elements in locations 2
and 3, then locations 3 and 4 and so on, swapping any that are
out of order.

• On the first pass, once the largest element is encountered, it will
be swapped with all of the remaining elements, moving it to the
end (bottom) of the list.

• The second pass, therefore, no longer needs to look at the last
element in the list. The second pass will move the second
largest element in the list until it is in the next to last location.

COP 3502: Computer Science I (Note Set #11) Page 5 © Mark Llewellyn

Bubble Sort Algorithm (cont.)
• This process repeats with each additional pass moving one

more of the larger elements down the list.

• During all of this, the smaller elements are migrating
toward the front (top) of the list.

• If on any pass, no swaps occur, then all of the elements are
now in order and the algorithm can terminate.

– There are some versions of the bubble sort that will not make this
check and will therefore continue to make passes through the list
until all possible passes have completed. This is clearly inefficient,
but be aware that such implementations of this algorithm do exist.

• Notice that each pass has the potential for moving a
number of elements closer to their final positions, even
though only the largest element on that pass is guaranteed
to wind up in its final location.

COP 3502: Computer Science I (Note Set #11) Page 6 © Mark Llewellyn

Bubble Sort Example

7

7

7

3

7

15

3

3

3

7

15

34

5645342215129

5645342212915

5645341292215

5645129342215

561294522343

12945225637

initial
unsorted
list

Sorted part of the list is shaded.Notice that on the fifth pass that no swaps
occurred, so the algorithm terminated with
a sorted list after only 5 passes.

COP 3502: Computer Science I (Note Set #11) Page 7 © Mark Llewellyn

Bubble Sort Algorithm Analysis (cont.)
Best Case

• Don’t let the swappedElements flag give you the wrong
impression how this algorithm works. Consider the situation in
which this algorithm will do the least amount of work.

• On the first pass, the for loop must fully execute, so at least n-1
comparisons will be done. Two possibilities must be considered:
there is at least 1 swap or there are no swaps.

• In the first case, the swappedElements flag will be set to true,
which will cause the while loop to execute a second time, which
will do another n-2 comparisons.

• In the second case, because there are no swaps, the
swappedElements flag will still be false and the algorithm will
end.

• So the best case will be n-1 comparisons, which is O(n) and this
will occur when the input data is already in sorted order.

COP 3502: Computer Science I (Note Set #11) Page 8 © Mark Llewellyn

Bubble Sort Example – Best Case

7

7

3

3

5645342215129

5645342215129

Sorted part of the list is shaded.

initial list

COP 3502: Computer Science I (Note Set #11) Page 9 © Mark Llewellyn

Bubble Sort Example – Worst Case

564534221512973

564534221512937

564534221512379

9

12

15

22

34

45

12

15

22

34

45

56

564534221537

56453422379

56453437912

56453791215

56379121522

37912152234

Sorted part of the list is shaded.

COP 3502: Computer Science I (Note Set #11) Page 10 © Mark Llewellyn

Bubble Sort Algorithm Analysis (cont.)
Worst Case

• If the best case occurs when the input data is already in sorted
order, we might want to see if having the input data in reverse
sorted order will lead to the worst case performance of the
algorithm.

• If the largest element is first, it will be swapped with every other
element down the list until it is in the last position.

• At the start of the first pass the second largest element in the list
was in the second position but it was swapped into the first
position when it was compared with the largest element that was
in the first position. Therefore, at the start of the second pass,
the largest remaining element is again in the first position of the
list, and it will be swapped with every other element in the list
until it is in the next to last position.

• This will be repeated for every other element in the list.

COP 3502: Computer Science I (Note Set #11) Page 11 © Mark Llewellyn

Bubble Sort Algorithm Analysis (cont.)
Worst Case (cont.)

• Thus, the algorithm must execute the for loop a total of n-1
times, which means that we guessed correctly that the input
data being in reverse sorted order does indeed deliver worst
case performance for this algorithm.

• How many comparisons are done in the worst case?

– The first pass will do n-1 comparisons on adjacent elements.

– The second pass will do n-2 comparisons on adjacent elements.

– Each successive pass will reduce the number of comparisons by 1,
which will leads to the following analysis:

()22
21n

1i

1

1ni
nOn

2
1

2
nn

2
)1n(nii)n(worst =≈+=+=== ∑∑

−

=−=

COP 3502: Computer Science I (Note Set #11) Page 12 © Mark Llewellyn

Bubble Sort Algorithm Analysis (cont.)
Average Case

• As we saw for the worst case, there are n-1 repetitions of
the inner for loop. For the average case, we’ll assume that
it is equally likely that on any of the passes there will be no
swaps done.

• We need to determine the number of comparisons are done
in each of these possibilities.

– If we stop after 1 pass, a total of n-1 comparisons have been made.
– If we stop after 2 passes, a total of n-1 + n-2 comparisons have been

made.

• Lets’ say that C(i) will calculate how many comparisons are
done on the first i passes.

• Since the algorithm terminates when there are no swaps done,
the average case is determined by looking at all of the places the
bubble sort could stop. This is given by:

COP 3502: Computer Science I (Note Set #11) Page 13 © Mark Llewellyn

Bubble Sort Algorithm Analysis (cont.)
Average Case (cont.)

()∑
−

=−
=

1n

1i
iC

1n
1)n(average

() () ()
2

iinn
2

i1i
2

n1njjjjiCwhere
221n

1j

1i

1j

i

1nj

1n

ij

+−−=−−−=−=== ∑ ∑∑ ∑
−

=

=

=−=

−

=

∑
−

=









 +−−
−

=
1n

1i

22

2
iinn

1n
1

)n(average

Note that n is a constant relative to i, so we have:

Substituting we have:

() () 










+−

−
+

−
=





















 +−
+

−
×−

−
= ∑ ∑∑

−

=

−

=

−

=

1n

1i

1n

1i

2
21n

1i

22
ii

1n2
1

2
nn

2
ii

2
nn

1n
1n

1
)n(average

COP 3502: Computer Science I (Note Set #11) Page 14 © Mark Llewellyn

Bubble Sort Algorithm Analysis (cont.)
Average Case (cont.)

Solving we have:

() () 










+−

−
+

−
=





















 +−
+

−
×−

−
= ∑ ∑∑

−

=

−

=

−

=

1n

1i

1n

1i

2
21n

1i

22
ii

1n2
1

2
nn

2
ii

2
nn

1n
1n

1
)n(average

()
() () () ()

4
n

12
1n2n

2
nn

2
n1n

6
1n2n1n

1n2
1

2
nn)n(average

22
+−−−=



 −+−−

−
+−=

()22
222

nOn
3
1

12
n2n4

12
n3nn2n6n6

)n(average =≈
−

=
++−−

=

Reducing gives:

COP 3502: Computer Science I (Note Set #11) Page 15 © Mark Llewellyn

Summary of Bubble Sort

• “Smart” versions of the algorithm terminate
whenever no swaps occur on a given pass.

• Analysis is the same whether bubbling smallest
element to front or largest element to rear.

O(n2)

O(n2)

O(n)

worst case

average case

best case

Bubble Sort

COP 3502: Computer Science I (Note Set #11) Page 16 © Mark Llewellyn

Merge Sort
• Merge sort is a recursive sorting algorithm. It is

based on the idea that merging two sorted lists can
be done in linear time.

• Since a list that contains only one item is by
definition sorted, merge sort will break a list down
into one-element pieces and then sort as it merges
the pieces back together.

• All of the “work” for merge sort occurs during the
merging of the two lists.

COP 3502: Computer Science I (Note Set #11) Page 17 © Mark Llewellyn

MergeSort Algorithm

MergeSort (list, first, last)
// list the elements to be sorted
// first the index of the first element in the list
// last the index of the last element in the list

if (first < last){
middle = (first + last) / 2;
MergeSort(list, first, middle);
MergeSort(list, middle+1, last);
MergeLists(list, first, middle, middle+1, last);

}
end.

COP 3502: Computer Science I (Note Set #11) Page 18 © Mark Llewellyn

MergeLists Algorithm

MergeLists (list, start1, end1, start2, end2)
// list the elements to be put into order
// start1 beginning of “list” A
// end1 end of “list” A
// start2 beginning of “list” B
// end2 end of “list” B

finalStart = start1;
finalEnd = end1;
indexC = 1;
while (start1 <= end1) and (start2 <= end2) do

if list[start1] < list[start2] {
result[indexC] = list[start1];
start1++;}

else {
result[indexC] = list[start2];
start2++;

}
indexC++;

COP 3502: Computer Science I (Note Set #11) Page 19 © Mark Llewellyn

MergeLists Algorithm Continues

//move remainder of list that is left over
if (start1 <= end1) {

for (i=start1; i <= end1; i++) {
result[indexC] = list[i];
indexC++;

}
else

for (i=start2; i <= end2, i++) {
result[indexC] = list[i];
indexC++;

}

//put the result back into the original list
indexC = 1;
for (i = finalStart; i <= finalEnd; i++){

list[i] = result[indexC];
indexC++;

end.

COP 3502: Computer Science I (Note Set #11) Page 20 © Mark Llewellyn

Merge Sort Example
23 6 44 88 29 55 46 13

23 6 44 88 29 55 46 13

23 6 44 88 29 55 46 13

23 6 44 88 29 55 46 13

6 23 44 88 29 55 13 46

6 23 44 88 13 29 46 55

6 13 23 29 44 46 55 88

COP 3502: Computer Science I (Note Set #11) Page 21 © Mark Llewellyn

How MergeLists Works

1. Compare values of ptrA and ptrB: ptrA < ptrB, put 6 in final list, advance ptrA.
2. Compare values of ptrA and ptrB: ptrA > ptrB, put 9 in final list, advance ptrB.
3. Compare values of ptrA and ptrB: ptrA > ptrB, put 13 in final list, advance ptrB.
4. Compare values of ptrA and ptrB: ptrA < ptrB, put 23 in final list, advance ptrA.
5. Compare values of ptrA and ptrB: ptrA < ptrB, put 44 in final list, advance ptrA.
6. Compare values of ptrA and ptrB: ptrA > ptrB, put 46 in final list, advance ptrB.
7. Compare values of ptrA and ptrB: ptrA > ptrB, put 55 in final list, advance ptrB.
8. ptrB has reached the end of listB.
9. Add remainder of listA to final list.

6 23 44 88 9 13 46 55

List A List B

95

ptr A ptr B

initial configuration

configuration at 5 below:

6 23 44 88 9 13 46 55

List A List B

95

ptr A ptr B

COP 3502: Computer Science I (Note Set #11) Page 22 © Mark Llewellyn

MergeLists Analysis
• Because all of the element comparisons occur in

MergeLists, we’ll begin our analysis of MergeSort there.

• Let’s look at the case when all of the elements of listA are
smaller than the first element of listB. For example, listA=
[2, 3, 4] and listB= [7, 8, 9, 10]. What will happen in
MergeLists?

– We’ll compare A[1] with B[1] and since A[1] < B[1] it will move
to the final result list.

– Next, we’ll compare A[2] with B[1] and since A[2] < B[1] it will
move to the final result list.

• Since every element in listA will be compared with the first
element of listB, this implies that the total number of
comparisons will be equal to the number of elements in
listA.

COP 3502: Computer Science I (Note Set #11) Page 23 © Mark Llewellyn

MergeLists Analysis (cont.)

• What will happen when the first element of listA is greater than
the first element of listB but all of the remaining elements of
listA are smaller than the second element of listB?

– For example: listA = [4, 7, 8] and listB = [2, 10, 12, 14].

– We’ll compare A[1] and B[1] and move B[1] to the result list.
Now we’re in the same situation as before in that every remaining
element in listA is smaller than B[2].

• In this case we’ll need to compare every element of listA with
B[2], plus the comparison we already did with A[1] and B[1]. In
total we’ll need a number of comparisons equal to the number of
elements in listA plus 1.

• In general, MergeLists will require a total of NA + NB – 1
comparisons where NA and NB are the number of elements in
listA and listB respectively.

COP 3502: Computer Science I (Note Set #11) Page 24 © Mark Llewellyn

MergeSort Analysis
• Now that we know the complexity of MergeLists, we

can deal with MergeSort.

• Notice that the MergeSort is called recursively as long
as first is less than last.

• If they are equal or first is greater than last, there is no
recursive call.

– If first is equal to last, then this represents a list of size 1. If
first is greater than last, this represents a list of size 0. In
both of these cases the algorithm does nothing, so the direct
solution makes 0 comparisons.

COP 3502: Computer Science I (Note Set #11) Page 25 © Mark Llewellyn

MergeSort Analysis (cont.)
• The division of the list into two parts is done by the calculation

of middle. This is done utilizing the halving principle which
splits the list into two equal parts (integer division, so roughly
equal).

• Thus a list with n elements will be split into a list of n/2
elements. From our earlier analysis of MergeLists, this means
that the combine step requires n/2 comparisons in the best case,
and n/2+n/2-1 or n-1 comparisons in the worst case.

• Putting this all of this together gives the two recurrence relations
for the worst and best cases:

– W(n) = 2W(n/2)+n-1

– W(0) = W(1) = 0

– B(n) = 2B(n/2)+n/2

– B(0) = B(1) = 0

COP 3502: Computer Science I (Note Set #11) Page 26 © Mark Llewellyn

MergeSort Analysis (cont.)
• Solving for the worst case we have:

– W(n) = 2W(n/2)+n-1
– W(n/2) = 2W(n/4)+n/2-1
– W(n/4) = 2W(n/8)+n/4-1
– W(n/8) = 2W(n/16)+n/8-1
– W(n/16) = 2W(n/32)+n/16-1

• Substituting:
– W(n) = 2W(n/2)+n-1
– W(n) = 2(2W(n/4)+n/2-1)+n-1
– W(n) = 4W(n/4)+n-2+n-1
– W(n) = 4(2W(n/8)+n/4-1)+n-2+n-1
– W(n) = 8W(n/8)+n-4+n-2+n-1
– W(n) = 8(2W(n/16)+n/8-1)+n-4+n-2+n-1
– W(n) = 16W(n/16)+n-8+n-4+n-2+n-1
– W(n) = 16(2W(n/32)+n/16-1)+n-8+n-4+n-2+n-1
– W(n) = 32W(n/32)+n-16+n-8+n-4+n-2+n-1

COP 3502: Computer Science I (Note Set #11) Page 27 © Mark Llewellyn

MergeSort Analysis (cont.)

• The closed form of this equation becomes:

• In turns out that the best case performance of the merge sort
algorithm is identical to this, which means that merge sort is a
very efficient sort, even in the worst case.

• The main problem suffered by merge sort if the extra space
required to support the merge.

() () ()∑
−

=
=+−=−+×=

)1n(log

0i
22

i
2

2

nlognO1nnlogn2nlogn1WnnW

COP 3502: Computer Science I (Note Set #11) Page 28 © Mark Llewellyn

Summary of Merge Sort

• Very efficient sorting algorithm.

• Suffers only from additional space required to
support the merge. This is a very common
external sorting algorithm.

O(n log2 n)

O(n log2 n)

O(n log2 n)

worst case

average case

best case

Merge Sort

