
 1

1. (15 points-total)

Convert the following infix expression to its corresponding postfix form. Show the values in the
stack at the points indicated in the expression (points marked 1, 2, 3, and 4).

(((1 + 3) * (4 + 2)) / 2) + (5 * (2 + 3))

Postfix expression:

Stack at point #1 Stack at point #2 Stack at point #3 Stack at point #4
 (EMPTY)

COP 3502 – Exam #2 – Spring 2004
NAME:

March 18, 2004 (100 points)
 please print clearly

KEY

1 2 3 4

1 3 + 4 2 + * 2 / 5 2 3 + * +

(

(

+

(

*

(

(

+

(

*

(

+

 2

2. (10 points)
Given the following array of integers, show the contents of the array after each of the first six
passes of the bubble sort on this array. Assume that the bubble sort is to sort the values into
ascending order.

Array X

index 0 1 2 3 4 5 6 7 8 9 10 11

value 41 36 22 13 17 32 25 34 28 3 27 14

index 0 1 2 3 4 5 6 7 8 9 10 11

initial 41 36 22 13 17 32 25 34 28 3 27 14

pass 1 36 22 13 17 32 25 34 28 3 27 14 41

pass 2 22 13 17 32 25 34 28 3 27 14 36 41

pass 3 13 17 22 25 32 28 3 27 14 34 36 41

pass 4 13 17 22 25 28 3 27 14 32 34 36 41

pass 5 13 17 22 25 3 27 14 28 32 34 36 41

pass 6 13 17 22 3 25 14 27 28 32 34 36 41

3. (10 points)

Write a recursive function (in C) which will correctly print the first n odd integer numbers. You
must define this function using only a single numeric parameter to be passed to the procedure.
Assume that the initial call has the form: print_odd(n) where n indicates how many odd
numbers are to be printed. For example, the call print_odd(6) would produce the following
output: 1 3 5 7 9 11. Assume that n > 0.

void function print_odd (int n)
{ //print the first n odd integers recursively.
 // Assume n > 0.
 if (n ==1)
 printf(“1 \n”);
 else {

 print_odd(n-1);
 printf(“%d “, (2*n)-1);

 }
}//end function print_odd

 3

4. (10 points)

Consider the following recursive function.

 What value is produced by the following function call? SHOW YOUR WORK BELOW!

 P4(1,1)

 Solution :
 P4(1,1) = P4(0,1) + P4(1,0)
 = P4(-1,1) + P4(0,0) + P4(1,0)
 = P4(-1,1) + P4(-1,0) + P4(0,-1) + P4(1,0)
 = P4(-1,1) + P4(-1,0) + P4(0,-1) + P4(0,0) + P4(1,-1)
 = P4(-1,1) + P4(-1,0) + P4(0,-1) + P4(-1,0) + P4(0,-1) + P4(1,-1)
 = [-1-1] + [-1-0] + [0-(-1)] + [-1-0] + [0-(-1)] + [1-(-1)]
 = -2 + (-1) + 1 + (-1) + 1 + 2
 = 0

0

int P4 (int x, int y)
{
 if (x < 0 || y < 0)

return x−y;
 else
 return (P4(x-1, y) + P4(x, y-1));
}

 4

5. (10 points)
Trace the effect of executing the code segment shown below on the linked list structure, also shown
below, by drawing the linked list as it would look after the code has been executed.

The linked list:

Solution: The code adds a new node after every node whose data value is less than or equal to 5.

The new node has a data value equal to its predecessor plus 3. (New nodes are shaded.)

struct node{
 int data;
 struct node *next;
};

p = head;
while (p != NULL)
{ if (p->data <= 5)
 { newp = (struct node *) malloc(sizeof(struct node));
 newp->data = p->data + 3;
 newp->next = p->next;
 p->next = newp;
 p = newp;
 }
 else
 p = p->next;
}

head

4 8 7 2 3 9 5 1 null

head

4 7 8 7 2 5 8 3

null 5 8 1 4 7 9 6

 5

6. (15 points)
Consider the circular array implementation of a queue in which the array is declared to have a
size of 5. Trace the status of the queue by showing the elements in the queue and the position of
the front and rear pointers after each of the operations shown below. Assume that the queue is
initially empty.

 1. enqueue(Q, 45);
 2. enqueue(Q, 12);
 3. enqueue(Q, 69);
 4. enqueue(Q, 54);
 5. x = dequeue(Q);
 6. enqueue(Q, 98);
 7. y = dequeue(Q);
 8. enqueue(Q, y);
 9. enqueue(Q, x);
 10. x = dequeue(Q);

After stmt #1: After stmt #2:

After stmt #3: After stmt #4:

After stmt #5: After stmt #6:

After stmt #7: After stmt #8:

After stmt #9: After stmt #10:

45

front

rear
45 12

front

rear

45 12 69

front

rear
45 12 69 54

front

rear

 12 69 54

front

rear

 12 69 54 98

front

rear

 69 54 98

front

rear

12 69 54 98

front

rear

12 45 69 54 98

front

rear

12 45 54 98

front

rear

 6

7. (10 points)

You have developed an algorithm which is known to be O(n2) and can solve a problem instance
of size n = 40 in 4 minutes. Your boss has just given you a big problem to solve by the time the
board of directors meeting begins at 3:00pm. If it is 2:30pm now and the big problem to be
solved is of size n = 120, will you solve the problem in time to ask for a big raise?

 min)(
)(

)()()()(
3634

40

4120
t

t
120

4
40 2

2

222
===⇒=

Sorry! No raise today.

8. (10 points)
For the following code segment give (a) the Big-Oh run-time of the code and (b) the value of the
variable x after the loop ends.
 x = 0;
 for (i = 1; i <= 3*n+2; i++)
 for (j = 1; j <= 2*n-1; j++)
 x = x + i;

(a) ∑∑ ∑
+

=

+

=

−

=
=−+=−−+=+−=−=

2n3

1i

222
2n3

1i

1n2

1j
)n(O2nn6)2n3n4n6()2n3)(1n2(1)1n2(1

(b) ∑∑ ∑
+

=

+

=

−

=

−−+
=

++
−=−=

2n3

1i

232n3

1i

1n2

1j 2
6n3n21n18

2
)3n3)(2n3(

)1n2(i)1n2(i

9. (10 points – 5 points each)
Consider the merge-sort algorithm shown below:

 7

 void Mergesort(int list[], int start, int end)
 { int mid;
 if (start < end)
 { mid = (start + end) /2;
 Mergesort (list, start, mid);
 Mergesort (list, mid+1, end);
 Merge(list, start, mid+1, end);
 }
 }

 The following array is to be sorted using this algorithm.

30 21 40 15 13 8 4 6

(a) How many recursive calls to the Mergesort function will be made to sort this array? (Do not

count the original call from main which is not a recursive call.)

 Answer:

(b) How many calls to the Merge function are made in total?

 Answer:

14

7

 8

