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Dealing with Summations

Most programs contain some sort of looping constructs
which causes arepetition of the execution of some program
Instructions.

When analyzing running time costs for programs with
loops, we need to add up the costs for each time the loop is
executed.

This is an example of a summation. Summations are
smply the sum for some function over a range of
parameter values.

Summations are typically written using the “Sigma’
notation:

1)
=1

(’
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Dealing with Summations (cont.)

1)
=1

The Sigma notation indicates that we are summing the
value of f(i) over some range of integer values.

The parameter to the expression and its initial value are
Indicated below the S symbol.

— In this case the notation i = 1 indicates that the parameter
(summation variable) isi and itsinitial valueis 1.

On top of the S symbol is the expression which indicates
the maximum vaue for the summation variable.

— Inthiscase, thisexpression isssmply n.
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Dealing with Summations (cont.)

Note that in many textbooks that the Sigma notation is
often typeset inline as; a0

Q () ° f(@) +1(2) +- +f(n- 1) +f(n)
=1

Given a summation, it is often replaced with an equation
that directly computes the value of the summation.

Such an equation Is known as a closed-form solution, and
the process of replacing the summation with its closed-
form solution is known as solving the summation.

”
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Common Summations and Their Closed-Form Solution

Below are the some very common summations and their closed-form.

n
(o)

al=n
I=1

n n
al®°
i=0 i=1

n

Ai°=1+4+9+---+n

=il

Ioogn
an=nlogn
=il

g i 1 2 3

=T+ T+ T4,

a
i:12| 2 4 8

Qi=1+2+3+--

n
ql=n+1
1=0

+(n- 1)Jrn:n(n+1)

2 _2n3 +3n% +n
6
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Generating Closed-Form Solutions for Summations

. The question is, how do you generate the closed-form solution for a
summation?

. The answer is. by solving the summation.

. The technique used to solve the summation varies dightly depending
on the summation. There are afew general casesto consider:

—  summations which begin at either 0 or 1 and have a constant upper limit.

— summations which begin at either 0 or 1 and have a variable upper limit.
If the upper summation limit is a variable, then the summation can be
expressed in a closed-form.

—  summations which begin at a value other than 0 or 1 and have either a
constant or variable upper limit.

We'll look at all these cases separately.

”
COP 3502: Computer Science | (Day 9) Page 6 © Mark Llewellyn g};




Constant Upper Limit to the Summation

Examples. Given the following summations, evaluate the

summeations.
6 6

o)

31=31=(1+1+1+1+1+1+1)=7
1=0 1=0

ook
31=31=(1+1+1+1+1+1)=6
=1 =1

Note: we could have evaluated the summations using the closed-form
solution of the summation.
n
31=(h+1)=(6+1)=7
i=0

g
al=n==o6
i=1
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Constant Upper Limit to the Summation

Example: Given the following summation, evaluate the summation.

6 6
82=28i=2" (1+2+3+4+5+6)=2" 21=42

Note: we could have evaluated the summation using the closed-form
solution of the summation.

constants are not part of
the summation and can be
removed from it.

2(n(n +2)) _ 2(6%)+2(6) _ 646 = 40
2
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Variable Upper Limit to the Summation

Example: Given the following summation, produce the closed-form
solution.
5(n(n + 1)) _5n° +5n

95. 59.
abi=5qi= =
i=1 i=1 2 2

Note: the following summation produces the same result!

_ 5(n(n +1)) _ 5n® +5n

2 2

The first term in this summation
adds nothing to the result since
50=0

Once the closed form is found, we can evauate the summation for some
given upper limit on the summation. In this example, if we assume that n =
Sthenwehave: o 52,57 s5(25)+25 150

a ol
1 2 2 2

75
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Generating Closed-Forms for Complex Functions

If the summation function involves additional terms, then the
summation is broken-up into separate summations as shown in the

example below:

Examples:

n

n n
3 (4i+8)=48i+83 1= 4(”(';+1))+8n:

2
+
u +8n = 2n2 +10n

i=1 =1 =1

1 T

initial function (4i+8) is
split into two pieces.

v v
n

3 D 4nn+1

)\ g(n+1)< 40" +4n

+8n+8=2n° 410n+8

=43i+83 1=
1=0 1=0
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Generating Closed-Forms for Complex Functions

A couple more examples:

& g d
3 (3i- 5)=33i- 58 1=
i=1 =1 =1

3(n(n +1)) _ 3n% +3n ~10n _ 3n% - 7n

2 2 2

- 5n

3 3 3 5
3 (4i2 +3i - 2):43_ i°+33i- 28 1=
i=0 =0 i=0  i=0

_ 4(2n3 +3n° + n)+ 3(n2 +n)_ 2(n
6

)= 8n° +12n2 + 4n N 3n° +3n

+1 -2n-2=
6

_8n° +12n%2 +4n+9n° +9n- 12n- 12 _8n3 +2In® +n- 12
6 6
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Closed-form for Summations with Initial Value > 1

There are two basic techniques that can be used to determine the
closed-form solution for summations in which the initial value of the

summation is greater than 1.

a

I=m

1.  Shift the range of the summation.

. In this technique you shift the summation range down until the garting value
Is equal to 1 and add into the function all of the values that are omitted

because of the range shift.
2. Subtract the difference between two summations.

. In this technique you actually produce the summation over the entire range
from 1 to n and then subtract out the value of the summation over the range

from 1 to m-1.

We'll look at some examples using both techniques and then you can
decide for yourself which technique you prefer.
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Shifting the Range of the Summation

The following example illustrates the range shifting technique for
dealing with summations where the initial value of the summation
range is greater than 1.

Example:
10

Notice that there are 7 termsin: _é i=(4+5+6+7+8+9+10)

the difference between those se'vcle:n4 numbers and the summation
éi=(1+2+3+4+5+6+7)

islztlhat the numbers in (4+5+6+7+8+9+10) are each 3 larger than the

numbersin (1+2+3+4+5+6+7) .

Thus, (4+5+6+7+8+9+10) isequal to
(1+3)+(2+3)+(3+3)+(4+3)+(5+3) +(6+3)+(7+3)
We can write (1+3)+(2+3)+(3+3)+(4+3)+(5+3)+(6+3)+(7+3) as
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Shifting the Range of the Summation

é(i+3):((1+3)+<2+3)+(3+3)+(4+3)+(5+3)+(6+3)+(7+3))
i=1

This means that:

10 7 & ' L §n2+ ) 49 +7 56
3i=3(+3)=49 a(+3)=8i+381="— 3()‘T 21="+21=49
i=4 i=1

i=1 i=1 i=1

Let’ s check thisto be certain:

0
i=(4+5+6+7+8+9+10)=49

7 (i+3)=(1+3)+(2+3)+(8+3)+(4+3)+(5+3)+(6+3)+(7+3))=

=(4+5+6+7+8+9+10)=49
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Subtracting Partial Summation from Total Summation

. The following example illustrates the subtraction technique for
dealing with summations where the initial value of the summation
range is greater than 1.

Example:
10

Noticethat: & i= (4+5+6+7+8+9+10):49
i=4

Isequal to: (1+2+3+4+5+6+7+8+9+10) — (1+2+3) =55 -6 =49.
Another way of stating thisis: 10 10 3

Qi=ai- qi
=4 1 1

Let’s check to seeif thisisreally correct.

10 10

3
Qi=4i- Ai-
=4 1 1

. _10°+10 3°+3_110 12

=55-6=49
2 2 2 2
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Another Example — Range Shifting Technique

. The following example illustrates range shifting technique for dealing with
summations where the initial value of the summation range is greater than
1.

67

e Example. Find the value of the summation & (3i+5)
=23

67

To convert & (3i+5) into a summation which starts at 1, shift the index range down by 22.
i=23

This means that we have to add 22 to each i term in the summation. But, we don't

add 22 to the 5's because the shifted summation will still have the same number of

5's (45 of them). Shifting the range we have:

67 45 45 45
8 ([@Bi+5)=8 (3(+22)+5)=§ (3i+66+5)=§ (3i+71)
=23 i=1 =1 i=1

Solving this summation we have:

45 45 45 2
8 @i+71)=33i+714 1= 3(45 i 45) +717 45=2210 3195 = 6300
i=1 i=1 =1

”
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Another Example — Summation Subtraction Technique

. The following example illustrates the subtraction technique for dealing
with summations where the initial value of the summation range is greater
than 1.
67

Example:  Find the value of the summation & (3i+5)
=23

67 22
To convert & (3i+5) into a summation which starts at 1, and subtract a (3i+5)
i=23 i=1
%7 %7 %2 >® %7 %7 o) 2 %2 o)
3 (3i+5)=8 (3i+5)- 4 (3i+5)=638 i+58 13- ¢4 3i+58 1
i=23 i=1 i=1 i=1 =1 @ &i=1 i=1 @

Solving this expression we have:

67 67 @ 2 22 A
a%é i+53 1% aéé 3i+53 1E:M +5(67)- @ 5(22)

i=1 =1 @ €=l =1 @

=3(67)34 + 5(67) - 3(11)23 - 5(22) =6834 +335- 759 - 110 = 6300
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Permutations

A permutation of a set of n objectsis ssimply an ordered arrangement
of those objects.

A common example of permutations deals with words. How many
“words’ can you form using the letters A, B, C, and D, without
repeating any letters.

Essentially, the question boils down to how many ways you can order
a set of objects.

In this case we know that we have four choices for the first letter.
Once that choice is made we have three choices for the second |etter,
and so on.

— Inparticular wehave: 4" 3" 2" 1= 24 possible permutations
— ABCD, ABDC, ACBD, ACDB, ADBC, ADCB
— BACD, BADC, BCDA, BCAD, BDAC, BDCA
— CABD, CADB, CBAD, CBDA, CDAB, CDBA
— DABC, DACB, DBAC, DBCA, DCAB, DCBA

(’
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Permutations (cont.)

In general, the number of permutations of n objectsis:
n"(n-1)" (n2)” ¥~ 2" 1=n! permutations

Now consider the following problem: Given n distinct
objects, how many permutation are there of r of those

objects, where 1 £r £ n?

— n” (N (2" Y4~ (n-r+l) =nl/(n-r)! permutations
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Combinations

Notice that when dealing with permutations, the order of the chosen
objects matters.

If the order of the objects does matter, then we are dealing not with a
permutation but rather a combination of the objects.

A combination of r objects from a set of n objects is a selection of r
obj ects without regard to order.

—  For example, if we have five objects: {a, b, c, d, €}, we can choose three
of these objectsin 10 different ways if order is not taken into account:

abc abd abe acd ace ade bcd bce bde cde

n!

rt(n-r)

In general: 8@2:
& o
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Combinations (cont.)

The values 893 are caled the binomia coefficients because of therole
they play inwhat is commonly referred to as Newton’s Theorem.

Newton’s Theorem

nc)nl

gn 1,0_ =

1ex) =1+ 2%+ 282 4
R

n

Note: if x = 1 we have: égra
r=0

A table displaying the values of & 6 = %s often called Pascal’ striangle an
IS shown on the next page.
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Pascal’s Triangle

nr| O 1 2 3 4 5 6 7 8 9
0 1
1 1 1
2 1 2 1
/__ .
31113 3 1 / a@gz 75040 _5040 .
EAQ, AT7-4) 43 144
4 1 4 6 4 1 /
5|1 |5|10[10| 5|1
6 1 6 | 15 | 20 | 15 J 6
4 1 4 21 35 35 21 4
8 1 8 | 28 | 56| 70 | 56 | 28 | 8
9 1 9 | 36 | 84 |126 | 126 | 84 | 36 | 9 1
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