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Dealing with Summations
• Most programs contain some sort of looping constructs 

which causes a repetition of the execution of some program 
instructions.

• When analyzing running time costs for programs with 
loops, we need to add up the costs for each time the loop is 
executed.

• This is an example of a summation.  Summations are 
simply the sum for some function over a range of 
parameter values.

• Summations are typically written using the “Sigma” 
notation:
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Dealing with Summations (cont.)

• The Sigma notation indicates that we are summing the 
value of  f(i) over some range of integer values.

• The parameter to the expression and its initial value are 
indicated below the Σ symbol.

– In this case the notation i = 1 indicates that the parameter 
(summation variable) is i and its initial value is 1.

• On top of the Σ symbol is the expression which indicates 
the maximum value for the summation variable. 

– In this case, this expression is simply n.
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Dealing with Summations (cont.)

• Note that in many textbooks that the Sigma notation is 
often typeset inline as:

• Given a summation, it is often replaced with an equation 
that directly computes the value of the summation.

• Such an equation is known as a closed-form solution, and 
the process of replacing the summation with its closed-
form solution is known as solving the summation.

)n(f)1n(f)2(f)1(f)i(f
n

1i

+−+++≡∑
=

L

∑ =

n

1i
)i(f



COP 3502: Computer Science I  (Day 9)              Page 5 © Mark Llewellyn

Common Summations and Their Closed-Form Solution

• Below are the some very common summations and their closed-form.
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Generating Closed-Form Solutions for Summations

• The question is, how do you generate the closed-form solution for a 
summation?

• The answer is: by solving the summation.

• The technique used to solve the summation varies slightly depending 
on the summation.  There are a few general cases to consider:

– summations which begin at either 0 or 1 and have a constant upper limit.

– summations which begin at either 0 or 1 and have a variable upper limit. 
If the upper summation limit is a variable, then the summation can be 
expressed in a closed-form.

– summations which begin at a value other than 0 or 1 and have either a 
constant or variable upper limit.

• We’ll look at all these cases separately.
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Constant Upper Limit to the Summation
• Examples:  Given the following summations, evaluate the 

summations.

Note:  we could have evaluated the summations using the closed-form 
solution of the summation.
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Constant Upper Limit to the Summation
• Example:  Given the following summation, evaluate the summation.

Note:  we could have evaluated the summation using the closed-form 
solution of the summation.
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Variable Upper Limit to the Summation
• Example: Given the following summation, produce the closed-form 

solution.

Note:  the following summation produces the same result!

Once the closed form is found, we can evaluate the summation for some 
given upper limit on the summation.  In this example, if we assume that n = 
5, then we have:
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The first term in this summation 
adds nothing to the result since 
5×0 = 0
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Generating Closed-Forms for Complex Functions
• If the summation function involves additional terms, then the 

summation is broken-up into separate summations as shown in the 
example below:

• Examples:  
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Generating Closed-Forms for Complex Functions
• A couple more examples:  
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Closed-form for Summations with Initial Value > 1

• There are two basic techniques that can be used to determine the
closed-form solution for summations in which the initial value of the 
summation is greater than 1.

1. Shift the range of the summation.

• In this technique you shift the summation range down until the starting value 
is equal to 1 and add into the function all of the values that are omitted 
because of the range shift.

2. Subtract the difference between two summations.

• In this technique you actually produce the summation over the entire range 
from 1 to n and then subtract out the value of the summation over the range 
from 1 to m-1.

• We’ll look at some examples using both techniques and then you can 
decide for yourself which technique you prefer.
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Shifting the Range of the Summation
• The following example illustrates the range shifting technique for 

dealing with summations where the initial value of the summation
range is greater than 1. 

• Example:  

• Notice that there are 7 terms in: 

• the difference between those seven numbers and the summation

is that the numbers in (4+5+6+7+8+9+10) are each 3 larger than the 
numbers in  (1+2+3+4+5+6+7) .

• Thus, (4+5+6+7+8+9+10) is equal to 

(1+3)+(2+3)+(3+3)+(4+3)+(5+3)+(6+3)+(7+3)

• We can write (1+3)+(2+3)+(3+3)+(4+3)+(5+3)+(6+3)+(7+3) as
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Shifting the Range of the Summation
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Subtracting Partial Summation from Total Summation
• The following example illustrates the subtraction technique for 

dealing with summations where the initial value of the summation
range is greater than 1. 

• Example:  

• Notice that:  

• is equal to: (1+2+3+4+5+6+7+8+9+10) – (1+2+3)  = 55 – 6 = 49.

• Another way of stating this is:

• Let’s check to see if this is really correct.  

( ) 4910987654i
10

4i
=++++++=∑

=

∑ ∑∑ −=
=

10

1

3

1

10

4i
iii

49655
2

12
2

110
2

33
2

1010
iii

2210

1

3

1

10

4i
=−=−=

+
−

+
=−= ∑ ∑∑

=



COP 3502: Computer Science I  (Day 9)              Page 16 © Mark Llewellyn

Another Example – Range Shifting Technique
• The following example illustrates range shifting technique for dealing with 

summations where the initial value of the summation range is greater than 
1. 

• Example:  Find the value of the summation

To convert                into a summation which starts at 1, shift the index range down by 22.

This means that we have to add 22 to each i term in the summation.  But, we don't 
add 22 to the 5's because the shifted summation will still have the same number of 
5's (45 of them).  Shifting the range we have:

Solving this summation we have:
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Another Example – Summation Subtraction Technique
• The following example illustrates the subtraction technique for dealing 

with summations where the initial value of the summation range is greater 
than 1. 

• Example:  Find the value of the summation

To convert                  into a summation which starts at 1, and subtract

Solving this expression we have:
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Permutations
• A permutation of a set of n objects is simply an ordered arrangement 

of those objects.

• A common example of permutations deals with words.  How many 
“words” can you form using the letters A, B, C, and D, without 
repeating any letters.

• Essentially, the question boils down to how many ways you can order 
a set of objects.

• In this case we know that we have four choices for the first letter.  
Once that choice is made we have three choices for the second letter, 
and so on.

– In particular we have:  4 × 3 × 2 × 1 = 24 possible permutations

– ABCD, ABDC, ACBD, ACDB, ADBC, ADCB
– BACD, BADC, BCDA, BCAD, BDAC, BDCA
– CABD, CADB, CBAD, CBDA, CDAB, CDBA
– DABC, DACB, DBAC, DBCA, DCAB, DCBA
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Permutations (cont.)

• In general, the number of permutations of n objects is:

– n × (n-1) × (n-2) × … × 2 × 1 = n! permutations

• Now consider the following problem:  Given n distinct 
objects, how many permutation are there of r of those 
objects, where 1 ≤ r ≤ n?

– n × (n-1) × (n-2) × … × (n-r+1) = n!/(n-r)! permutations
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Combinations
• Notice that when dealing with permutations, the order of the chosen 

objects matters.

• If the order of the objects does matter, then we are dealing not with a 
permutation but rather a combination of the objects.

• A combination of r objects from a set of n objects is a selection of r
objects without regard to order.

– For example, if we have five objects: {a, b, c, d, e}, we can choose three 
of these objects in 10 different ways if order is not taken into account:

abc   abd   abe   acd   ace   ade   bcd   bce   bde   cde

• In general:  
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Combinations (cont.)

• The values      are called the binomial coefficients because of the role 
they play in what is commonly referred to as Newton’s Theorem.

• Newton’s Theorem

• Note: if x = 1 we have:

• A table displaying the values of     is often called Pascal’s triangle an 
is shown on the next page.
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Pascal’s Triangle
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