
COP 3502: Computer Science I (Day 8) Page 1 Mark Llewellyn

COP 3502: Computer Science I
Spring 2004

– Day 8 –
Algorithm Analysis – Part 2

School of Electrical Engineering and Computer Science
University of Central Florida

Instructor : Mark Llewellyn
markl@cs.ucf.edu
CC1 211, 823-2790
http://www.cs.ucf.edu/courses/cop3502/spr04

COP 3502: Computer Science I (Day 8) Page 2 Mark Llewellyn

Big-Oh Notation
• Used to represent the growth rate of a function.

• Allows algorithm designers to establish a relative order
among functions by comparison of their dominant terms.

• Denoted as O(N2), read as "order N squared".

• constant function – O(1)
• logarithmic func. – O(log N)
• log-squared func. – O(log2 N)
• linear func. – O(N)
• N log N func. – O(N log N)
• quadratic func. – O(N2)
• cubic func. – O(N3)
• exponential func. – O(2N)

COP 3502: Computer Science I (Day 8) Page 3 Mark Llewellyn

Big-Oh Notation (cont.)

• Notation: f(n) = O(g(n)) [read as f(n) is big-oh of g(n)]
means that f(n) is asymptotically smaller than or equal to
g(n).

• Meaning: g(n) establishes an upper bound on f(n). The
asymptotic growth rate of the function f(n) is bounded
from above by g(n).

COP 3502: Computer Science I (Day 8) Page 4 Mark Llewellyn

Big-Oh Notation (cont.)

n

Time

m f(n)

cg(n)

g(n) is an upper bound on f(n)

COP 3502: Computer Science I (Day 8) Page 5 Mark Llewellyn

Omega Notation

Notation: f(n) = Ω(g(n)) [read as f(n) is omega of g(n)]
means that f(n) is asymptotically bigger than or equal to
g(n).

Meaning: g(n) establishes a lower bound on f(n). The
asymptotic growth rate of the function f(n) is bounded
from below by g(n).

COP 3502: Computer Science I (Day 8) Page 6 Mark Llewellyn

Omega Notation (cont.)

n

Time

m

f(n)

cg(n)

g(n) is an lower bound on f(n)

COP 3502: Computer Science I (Day 8) Page 7 Mark Llewellyn

Theta Notation

Notation: f(n) = Θ(g(n)) [read as f(n) is theta of g(n)]
means that f(n) is asymptotically equal to g(n).

Meaning: g(n) and f(n) have the same characteristics.

COP 3502: Computer Science I (Day 8) Page 8 Mark Llewellyn

Theta Notation (cont.)

n

Time

m f(n)

c1g(n)

g(n) is an upper and lower bound on f(n)

c2g(n)

COP 3502: Computer Science I (Day 8) Page 9 Mark Llewellyn

Little-Oh Notation
• Little Oh notation, o(f(n)), is commonly used in step count

analysis and provides a strict upper bound on the
asymptotic growth rate of the function.

• This means that f(n) is o(g(n)) iff f(n) is asymptotically
smaller than g(n). [Note that the equal to case provided by
the Big-Oh notation is not present in Little-Oh notation,
thus the strict upper bound.]

• Definition:

f(n) = o(g(n)) iff f(n) = O(g(n)) and f(n) ≠ Ω(g(n)).

COP 3502: Computer Science I (Day 8) Page 10 Mark Llewellyn

Growth Rates of Various Functions

1.844×1019

1.099×1012

4.294×109

65,536

256

16

4

2

2n

262,144

64000

32,768

4096

512

64

8

1

n3

4096

1600

1024

256

64

16

4

1

n2

384

≈212

160

64

24

8

2

0

n log n

64

40

32

16

8

4

2

1

n

≈5.3

5

0

2

4

6

3

1

log n

Growth rate of various functions (in terms of the number of steps in the algorithm)

COP 3502: Computer Science I (Day 8) Page 11 Mark Llewellyn

Example Growth Rates
• Let’s assume that the functions shown in the table are to be

executed on a machine which will execute a million
instructions per second.

• A linear function which consists of one million instructions
will require one second to execute.

• This same linear function will require only 4×10-5 seconds (40
microseconds) if the number of instructions (a function of
input size) is 40.

• Next, let’s consider an exponential function.

COP 3502: Computer Science I (Day 8) Page 12 Mark Llewellyn

Example Growth Rates (cont.)

• When the input size is 32 approximately 4.3×109 steps will be
required (since 232 = 4.29×109).

– Given our system performance this algorithm will require a running
time of approximately 71.58 minutes.

• Now consider the effect of increasing the input size to 40,
which will require approximately 1.1x1012 steps (since 240 =
1.09x1012).

– Given our conditions this function will require about 18325 minutes
(12.7 days) to compute.

• If n is increased to 50 the time required will increase to about
35.7 years. If n increases to 60 the time increases to 36558
years and if n increases to 100 a total of 4x1016 years will be
needed!

COP 3502: Computer Science I (Day 8) Page 13 Mark Llewellyn

Algorithm Analysis
• Remember, that baring some type of looping statement, the

code in a program (algorithm) is executed sequentially on von
Neumann type architecture.

• This means that without loops, each statement is executed
exactly one time and the running time of the algorithm is very
easy to establish.

• Loops cause iteration and iteration increases the running time
depending on how much iteration occurs.

• Therefore, we need to know, for the statements inside the loop,
how many times they are executed.

COP 3502: Computer Science I (Day 8) Page 14 Mark Llewellyn

Algorithm Analysis (cont.)

• Consider the two code segments shown below:

• What is the total number of addition operations (in terms of n)
performed by these two code segments?

grandtotal = 0;
for (k = 0; k < n – 1; ++k) {

rows[k] = 0;
for (j = 0; j < n – 1; ++j) {

rows[k] = rows[k] + matrix[k][j];
grandtotal = grandtotal + matrix[k][j];

}
}

grandtotal = 0;
for (k = 0; k < n – 1; ++k) {

rows[k] = 0;
for (j = 0; j < n – 1; ++j)

rows[k] = rows[k] + matrix[k][j];
grandtotal = grandtotal + rows]k];

}

Code segment #1 Code segment #2

2n2
n2 + n

COP 3502: Computer Science I (Day 8) Page 15 Mark Llewellyn

Algorithm Analysis (cont.)

• Assume that we are working with a hypothetical computer that
requires 1 microsecond (10-6) seconds to perform an addition.

• If the value of n = 1000 then segment #1 would require 2
seconds to execute since:

[(2×(1000)2)inst] × 10-6 sec/inst = 2 seconds

• On the other hand, segment #2 would require just over 1
second since:

[(1000)2 + 1000] inst × 10-6 sec/inst = 1.001 seconds

• If the value of n is increased to 100,000 then code segment #1
would require about 6 hours and code segment #2 would
require about 3 hours.

COP 3502: Computer Science I (Day 8) Page 16 Mark Llewellyn

Algorithm Analysis (cont.)
• Suppose that an algorithm takes T(N) time to run for a problem of

size N – the question becomes – how long will it take to solve a
larger problem? (Remember our earlier discussion of growth rates.)

• As an example, assume that the algorithm is an O(N3) algorithm.
This implies: T(N) = cN3.

• If we increase the size of the problem by a factor of 10 we have:
T(10N) = c(10N)3. This gives us:

T(10N) = 1000cN3 = 1000T(N) (since T(N) = cN3)

– Therefore, the running time of a cubic algorithm will increase by a
factor of 1000 if the size of the problem is increased by a factor of 10.
Similarly, increasing the problem size by another factor of 10
(increasing N to 100) will result in another 1000 fold increase in the
running time of the algorithm (from 1000 to 1×106). T(100N) =
c(100N)3 = 1×106cN3 = 1×106T(N)

COP 3502: Computer Science I (Day 8) Page 17 Mark Llewellyn

Algorithm Analysis (cont.)
• A similar argument will hold for quadratic and linear

algorithms, but a slightly different approach is required for
logarithmic algorithms. These are shown below.

– For a quadratic algorithm, we have T(N) = cN2. This implies: T(10N)
= c(10N)2. Expanding produces the form: T(10N) = 100cN2 =
100T(N). Therefore, when the input size increases by a factor of 10 the
running time of the quadratic algorithm will increase by a factor of 100.

– For a linear algorithm, we have T(N) = cN. This implies: T(10N) =
c(10N). Expanding produces the form: T(10N) = 10cN = 10T(N).
Therefore, when the input size increases by a factor of 10 the running
time of the linear algorithm will increase by the same factor of 10.

• In general, an f-fold increase in input size will yield an f 3-fold
increase in the running time of a cubic algorithm, an f 2-fold
increase in the running time of a quadratic algorithm, and an f-
fold increase in the running time of a linear algorithm.

COP 3502: Computer Science I (Day 8) Page 18 Mark Llewellyn

Algorithm Analysis (cont.)
• The analysis for the linear, quadratic, cubic (and in general

polynomial) algorithms does not work in the presence of logarithmic
terms.

• When an O(N logN) algorithm experiences a 10-fold increase in
input size, the running time increases by a factor which is only
slightly larger than 10.

– For example, increasing the input by a factor of 10 for an O(N logN) algorithm
produces: T(10N) = c(10N) log(10N).

– Expanding this yields: T(10N) = 10cN log(10N) = 10cN logN + 10cN logN =
10T(N) + c′N (where c′ = 10clog10).

– As N gets very large, the ratio T(10N)/T(N) gets closer to 10 (since c′N/T(N) ≈
(10 log10)/logN gets smaller and smaller as N increases).

• The above analysis implies, for a logarithmic algorithm, if the
algorithm is competitive with a linear algorithm for a sufficiently
large value of N, it will remain so for slightly larger N.

COP 3502: Computer Science I (Day 8) Page 19 Mark Llewellyn

How Much “Better” is O(log n) than O(n)

101024 (1 kilo)

1416,384

8256

30

20

19

18

17

6

4

O(log n)

1,073,741 (1 Gig)

1.048,576 (1 Meg)

16

131,072

524,288

262,144

64

O(n)

Comparison of O(n) to O(log n)

COP 3502: Computer Science I (Day 8) Page 20 Mark Llewellyn

Comparison of O(log n) and O(n2)

1.15x1018

1.09x1012

2.74x1011

6.87x1010

16 G

256M

1M

64K

4K

256

O(n2)

101024

1416,384

8256

30

20

19

18

17

6

4

O(log n)

1,073,741

1.048,576

16

131,072

524,288

262,144

64

n

Comparison of O(log n) and O(n2)

COP 3502: Computer Science I (Day 8) Page 21 Mark Llewellyn

Estimating Run-time
• We know that we can't accurately compare run times measured

on different machines, or with different operating systems or
languages or compilers.

• What if we have measured the run time of a specific algorithm,
on a specific combination of hardware, OS, language and
compiler? How do we estimate the new run time just for a
change in data size?

• If the algorithm is linear, i.e., O(n), it should be easy. If we
know the ratio of old data size to new data size, we know the
increase or decrease in time. For example: if it took 10 seconds
for n = 50, then if we double the data size to n = 100, it should
take twice as long.

COP 3502: Computer Science I (Day 8) Page 22 Mark Llewellyn

Estimating Run-time (cont.)

• Since increases in data size are not always going to be by
integer multipliers, we should generalize this calculation to a
simple formula that can be used for any value of the data size.

• This formula is based on the fact that the ratio of data size (n)
over time is the same for both the old and new data sizes, i.e.,
the time to perform each step is the same. The increase or
decrease in time comes from the change in the size of the data,
which means more or fewer steps are needed.

timenew
nnew

timeold
nold =

COP 3502: Computer Science I (Day 8) Page 23 Mark Llewellyn

Estimating Run-time (cont.)

• Using this formula we can accurately predict the
running time of our algorithms in terms of the input
size.

Example:

If we know that a certain O(n) algorithm takes 30
seconds when n = 75, we can calculate the estimated
time for n = 100 as follows:

s40t100t5.2
t

100
30
75 =⇒=⇒=

COP 3502: Computer Science I (Day 8) Page 24 Mark Llewellyn

Estimating Run-time (cont.)

• If the algorithm is O(n2), we’ll need to modify our formula a
little. Since the formula puts n over time, it is really calculating
how much time each step takes, i.e., 75steps/30seconds = 2.5
steps/second or 2/5 seconds per step.

• So, what does that mean for our formula for O(n2)?

• We know that an O(n) algorithm takes (by our definition of
Order) roughly 1 step for each item in the data set, thus it takes
n steps for n items. But, an O(n2) algorithm takes n2 steps for n
items. Thus, we should use that number of steps on top of the
formula:

() ()
timenew
nnew

timeold
nold 22

=

COP 3502: Computer Science I (Day 8) Page 25 Mark Llewellyn

Estimating Run-time (cont.)

• Using this formula we can accurately predict the
running time of our algorithms in terms of the input
size.

Example:

If we know that a certain O(n2) algorithm takes 50
seconds when n = 10, we can calculate the estimated
time for n = 20 as follows:

() ()
s200t400t2

t
20

50
10 22

=⇒=⇒=

COP 3502: Computer Science I (Day 8) Page 26 Mark Llewellyn

Estimating Run-time (cont.)

• Notice that our formula can also be used to answer a related
question concerning the growth rate related to our algorithm by
solving for the problem size rather than time.

Example:

If we know that a certain O(n2) algorithm takes 50 seconds
when n = 10, what is the largest problem instance that can be
solved in two and a half minutes?

() ()
17n317n300n

150
n

50
10 2

22
=⇒≈⇒=⇒= .

COP 3502: Computer Science I (Day 8) Page 27 Mark Llewellyn

Estimating Run-time (cont.)

• What about exponential algorithms (O(2n))?

• Again, we must find the number of steps and divide by the
time:

• Example: for a given O(2n) algorithm with n = 4 that takes 48
seconds, if we increase n to 6, how much longer will it take?

s192t6448t16
t

2
48

2 64
=⇒×=⇒=

)()(

timenew
2

timeold
2 nnewnold)()(

=

COP 3502: Computer Science I (Day 8) Page 28 Mark Llewellyn

Practice Problems Estimating Run-time
• Below are a few practice problems dealing with run-time or

problem size estimations. Try these before you look at the
answers on the next page.

1. An O(n!) algorithm with a problem instance of size n= 4 requires 72
seconds to solve. How long will it take to solve a problem instance of
size n = 5?

2. An O(2n) algorithm, a problem instance of size n = 7 required 96 seconds
to solve. If you solved a different problem instance and the algorithm
required 12 seconds to execute, how big was the problem instance?

3. An O(n/log2n) algorithm, a problem instance of size n = 32 runs in 96
msec. How long will the algorithm require if the problem instance is size
n = 64?

4. An O(n2) algorithm executing on a problem instance of size n = 30
executes in 250 seconds. How large of a problem could be executed in
100 seconds?

COP 3502: Computer Science I (Day 8) Page 29 Mark Llewellyn

Solutions to Practice Problems
• Below are the solutions to the practice problems on the

previous page.

() ()
ms360

4
725

t
t
5

72
4

1 =
×

=⇒=
!

!!!

() 4n162
96

122
2

12
2

96
2

2 n
7

n
n7

=⇒=⇒
×

=⇒=

() s12
64

768
t

t
6

64

96
5

32

t
64

64

96
32

32
3 22 ==⇒=⇒=

loglog

() 189718n360
25

9000
n

100
n

250
30

4 2
22

=≈⇒==⇒= .

