
COP 3502: Computer Science I (Day 7) Page 1 Mark Llewellyn

COP 3502: Computer Science I
Spring 2004

– Day 7 –
Algorithm Analysis

School of Electrical Engineering and Computer Science
University of Central Florida

Instructor : Mark Llewellyn
markl@cs.ucf.edu
CC1 211, 823-2790
http://www.cs.ucf.edu/courses/cop3502/spr04

COP 3502: Computer Science I (Day 7) Page 2 Mark Llewellyn

Algorithm Analysis
• Algorithm: a clearly specified set of instructions that the

computer will follow to solve a problem.

• Algorithm Analysis: determining the amount of
resources that the algorithm will require, typically in
terms of time and space.

• Areas of study include:

1. Estimation techniques for determining the runtime of
an algorithm.

2. Techniques to reduce the runtime of an algorithm.

3. Mathematical framework for accurate determination
of running time of an algorithm.

COP 3502: Computer Science I (Day 7) Page 3 Mark Llewellyn

Algorithm Analysis (cont.)
• The running time of an algorithm is a function of the size

of the input data.

– For example, we know that, all other things being equal it takes
longer to sort 1000 numbers than it does to sort 10 numbers.

• The value of this function depends on many factors,
including:

1. The speed of the host computer.

2. The size of the host computer.

3. The compilation process. The quality of compiled code can
vary from compiler to compiler and code to code.

4. The quality of the original source code which implements the
algorithm.

COP 3502: Computer Science I (Day 7) Page 4 Mark Llewellyn

Illustration of Running Time vs. Data Size

Time

N

linear

N log2 N

constant

quadraticcubic

COP 3502: Computer Science I (Day 7) Page 5 Mark Llewellyn

Comparing Functions

• When comparing two functions F(N) and G(N), it does
not make sense to state that: F < G, F = G, or G < F.

– Example: At some arbitrary point x, F may be smaller than G,
yet at some other point y, F may be equal to or greater than G.

• Instead, the growth rates of the functions need to be
determined.

• There is a three-fold reason for basing our analysis on
the growth rate of the function rather than its specific
value at some point:

COP 3502: Computer Science I (Day 7) Page 6 Mark Llewellyn

Comparing Functions

1. For sufficiently large values of N, the value of the
function is primarily determined by its dominant term
(sufficiently large varies by function).

• For example, consider the cubic function expressed by:

15N3 + 20N2 - 10N + 4.

For large values of N, say 1000, the value of this function is:
15,019,990,004 of which 15,000,000,000 is due entirely to the
N3 term.

Using only the N3 term to estimate the value of this function
introduces an error of only 0.1% which is typically close enough
for estimation purposes.

COP 3502: Computer Science I (Day 7) Page 7 Mark Llewellyn

Comparing Functions (cont.)
2. Constants associated with the dominant term are usually

not meaningful across different machines (although they
might be for identically growing functions).

3. Small values of N are generally not important.

1. constant function – function whose dominant term is a
constant (c)

2. logarithmic func. – dominant term is log N

3. log-squared func. – dominant term is log2 N

4. linear func. – dominant term is N

5. N log N func. – dominant term is N log N

6. quadratic func. – dominant term is N2

7. cubic func. – dominant term is N3

8. exponential func. – dominant term is 2N

COP 3502: Computer Science I (Day 7) Page 8 Mark Llewellyn

Measures of Work
• Evaluating and comparing the work required by various

algorithms is an important component of software
engineering.

• In fact, it is only by such measures that we can identify
which of various possible algorithms for a given
problem is preferable.

• In general, there are three different metrics by which
algorithms are evaluated:

1. Best case
2. Worst case

3. Average case

COP 3502: Computer Science I (Day 7) Page 9 Mark Llewellyn

Measures of Work (cont.)

• Consider the following problem: I give you a set of
eight coins and a comparator scale (gives relative not
absolute weights). I tell you that one of the coins maybe
counterfeit and that counterfeit coins weigh less than
real coins. Your mission (should you decide to accept
it) is to determine if the set of coins contains a
counterfeit coin.

• Question: In terms of the number of comparisons which
are necessary what is the best case, worst case, and
average case for this problem?

COP 3502: Computer Science I (Day 7) Page 10 Mark Llewellyn

Measures of Work (cont.)

• Consider the following problem: I give you a set of
eight coins and a comparator scale (gives relative not
absolute weights). I tell you that one of the coins maybe
counterfeit and that counterfeit coins weigh less than
real coins. Your mission (should you decide to accept
it) is to determine if the set of coins contains a
counterfeit coin.

• Question: In terms of the number of comparisons which
are necessary what is the best case, worst case, and
average case for this problem?

COP 3502: Computer Science I (Day 7) Page 11 Mark Llewellyn

Measures of Work (cont.)

• First, you need to devise an algorithm that will
solve the problem.

• Let’s use the following algorithm: divide the
set of 8 coins into 4 sets of two coins each. Put
a pair of coins on the scale and compare their
weights. If they are different, stop – counterfeit
coin detected; otherwise, repeat process until all
coins have been compared, stop – no counterfeit
coin detected.

COP 3502: Computer Science I (Day 7) Page 12 Mark Llewellyn

Measures of Work (cont.)

• Now let’s analyze our algorithm.

• Best case performance =

• Worst case performance =

• Average case performance =

– Note: Worst case performance can occur in two
different fashions: for determination that a
counterfeit coin is present and also for determination
that no counterfeit coin is present. Best case occurs
only if a counterfeit coin is present.

1 comparison

4 comparisons

2 comparisons

COP 3502: Computer Science I (Day 7) Page 13 Mark Llewellyn

Measures of Work (cont.)

• The obvious question at this point is, “can we do
better?”

• What do we mean by “better”?

• Better best case? Better worst case? Better average
case? Better for all three?

• Sometimes improving one, improves the others.

• For the algorithm that we started with, the answer is no,
we cannot do any “better” in terms of reducing the
number of comparisons in either the best, worst, or
average cases.

• Let’s try another algorithm.

COP 3502: Computer Science I (Day 7) Page 14 Mark Llewellyn

Measures of Work (cont.)

• Can you think of a different algorithm to solve
this problem?

• How about this one: divide the set of 8 coins
into 2 sets of four coins each. Put both sets of
coins on the scale and compare their weights. If
they are different, stop – counterfeit coin
detected; otherwise, stop – no counterfeit coin
detected.

COP 3502: Computer Science I (Day 7) Page 15 Mark Llewellyn

Measures of Work (cont.)

• Now let’s analyze our new algorithm.

• Best case performance =

• Worst case performance =

• Average case performance =

1 comparison

1 comparison

1 comparison

Clearly our new algorithm is “better” since both the worst case and the
average case performance require fewer comparisons (our metric in
this example).

COP 3502: Computer Science I (Day 7) Page 16 Mark Llewellyn

Measures of Work (cont.)

• Now let’s’ slightly modify the original problem to the
following: I give you a set of eight coins and a
comparator scale (gives relative not absolute weights). I
tell you that one of the coins maybe counterfeit and that
counterfeit coins weigh less than real coins. Your
mission now is to identify the counterfeit coin if one
exists in the set.

• Question: Once again, we’ll analyze our algorithm in
terms of the number of comparisons which are
necessary what is the best case, worst case, and average
case for this problem?

COP 3502: Computer Science I (Day 7) Page 17 Mark Llewellyn

Measures of Work (cont.)

• Again, we first need to devise an algorithm that will
solve the problem.

• Let’s use the following algorithm again: divide the set
of 8 coins into 2 sets of four coins each. Put a set of
coins on the scale and compare their weights. If they
are the same – stop – no counterfeit coin is present. If
they are different, divide the lighter set into two sets of
two coins each – repeat weighing. Divide lighter set
into two sets of 1 coin each – repeat weighing – stop –
lighter coin is the counterfeit coin.

COP 3502: Computer Science I (Day 7) Page 18 Mark Llewellyn

Measures of Work (cont.)

• Now let’s analyze our algorithm for this problem.

• Best case performance =

• Worst case performance =

• Average case performance =

1 comparison

3 comparisons

?

• Notice that for this algorithm the best case performance is only
possible if there is no counterfeit coin present. Similarly, the worst
case performance will only occur when there is a counterfeit coin
present.

• The average case depends on the presence or non-presence of a
counterfeit coin. Over a large number of executions of the
algorithm assuming “random data” the average will be 2
comparisons.

COP 3502: Computer Science I (Day 7) Page 19 Mark Llewellyn

Random Data

• The discussion of the average number of
comparisons made by our counterfeit coin
detector algorithm brings up an important issue
in algorithm analysis.

• What do we mean when we say that the input
data is “random” or “average”?

• How does “random” or “average” data compare
with the “actual” data that we would expect to
see at run-time?

COP 3502: Computer Science I (Day 7) Page 20 Mark Llewellyn

Random Data (cont.)

• It turns out that in many instances, the
assumption that the input data to an algorithm is
random, is a faulty assumption.

• In order to truly get a handle on what constitutes
“average input” we need to be alert to any
properties of the data or of the operational
situation in which the algorithm will be
executed that will impact what constitutes the
average case.

COP 3502: Computer Science I (Day 7) Page 21 Mark Llewellyn

Random Data (cont.)

• Consider the following case: When the phone company
produces a new phone book for the Orlando area, it
clearly needs to sort the names that will appear in the
new version of the phone book in alphabetical order.

• Does the input to the phone book sorting algorithm
appear as random data? Obviously not, they do not
resort the entire listing of names that already appear in
the phonebook. Rather they merge the new names into
the existing names to create one giant sorted set of
names.

• In other words, most of the data that is being sorted, is
in fact already sorted. This is clearly different than truly
random data and will obviously impact the sort time.

COP 3502: Computer Science I (Day 7) Page 22 Mark Llewellyn

Asymptotic Notation
• Definition: Let p(n) and q(n) be two nonnegative

functions. The function p(n) is asymptotically bigger
[p(n) asymptotically dominates q(n)] than the function
q(n) iff

• The function q(n) is asymptotically smaller than p(n) iff
p(n) is asympotically bigger than q(n).

• Functions p(n) and q(n) are asymptotically equal iff
neither is asymptotically bigger than the other.

0
np
nq

n
=

∞→)(
)(lim

COP 3502: Computer Science I (Day 7) Page 23 Mark Llewellyn

Asymptotic Notation (cont.)

• Example:

Let p(n) = 3n2 + 2n + 6 and q(n) = 10n + 7.

divide both functions by n2 (to reduce dominant term to
a constant) which will produce:

Thus, 3n2 + 2n + 6 is asymptotically bigger than 10n +
7. Similarly, 10n + 7 is asymptotically smaller than 3n2

+ 2n + 6.

6n2n3

7n10
2n ++

+
∞→

lim

030
n6n23

n7n10
2

2
==

++

+
= /

//

//

COP 3502: Computer Science I (Day 7) Page 24 Mark Llewellyn

Asymptotic Notation (cont.)

• Another Example:

– Let p(n) = 6n + 2 and q(n) = 12n + 6

21126
n612

n26
nbydivide

6n12
2n6

236
n26
n612

nbydivide
2n6
6n12

n

n

//
/

/
)(lim

/
/
/

)(lim

==
+
+==

+
+

==
+
+

==
+
+

∞→

∞→

Thus, p(n) is asymptotical equal to q(n).

COP 3502: Computer Science I (Day 7) Page 25 Mark Llewellyn

Asymptotic Notation (cont.)

• Practice Problems:

– Show that: 8n4 + 9n2 is asymptotically bigger than
100n3 – 3.

– Show that 8n4 + 9n2 is asymptotically bigger than
2n2 + 3n and 83n.

COP 3502: Computer Science I (Day 7) Page 26 Mark Llewellyn

Big-Oh Notation
• Used to represent the growth rate of a function.

• Allows algorithm designers to establish a relative order
among functions by comparison of their dominant terms.

• Denoted as O(N2), read as "order N squared".

• constant function – O(1)
• logarithmic func. – O(log N)
• log-squared func. – O(log2 N)
• linear func. – O(N)
• N log N func. – O(N log N)
• quadratic func. – O(N2)
• cubic func. – O(N3)
• exponential func. – O(2N)

COP 3502: Computer Science I (Day 7) Page 27 Mark Llewellyn

Big-Oh Notation (cont.)

• Notation: f(n) = O(g(n)) [read as f(n) is big-oh of g(n)]
means that f(n) is asymptotically smaller than or equal to
g(n).

• Meaning: g(n) establishes an upper bound on f(n). The
asymptotic growth rate of the function f(n) is bounded
from above by g(n).

COP 3502: Computer Science I (Day 7) Page 28 Mark Llewellyn

Big-Oh Notation (cont.)

n

Time

m f(n)

cg(n)

g(n) is an upper bound on f(n)

