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Algorithm Analysis
• Algorithm: a clearly specified set of instructions that the 

computer will follow to solve a problem. 

• Algorithm Analysis: determining the amount of 
resources that the algorithm will require, typically in 
terms of time and space.

• Areas of study include:

1. Estimation techniques for determining the runtime of 
an algorithm.

2. Techniques to reduce the runtime of an algorithm.

3. Mathematical framework for accurate determination 
of running time of an algorithm.
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Algorithm Analysis (cont.)
• The running time of an algorithm is a function of the size 

of the input data. 

– For example, we know that, all other things being equal it takes
longer to sort 1000 numbers than it does to sort 10 numbers.

• The value of this function depends on many factors, 
including:

1. The speed of the host computer.

2. The size of the host computer.

3. The compilation process.  The quality of compiled code can 
vary from compiler to compiler and code to code.

4. The quality of the original source code which implements the 
algorithm.
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Illustration of Running Time vs. Data Size
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Comparing Functions

• When comparing two functions F(N) and G(N), it does 
not make sense to state that: F < G, F = G, or G < F.

– Example: At some arbitrary point x, F may be smaller than G, 
yet at some other point y, F may be equal to or greater than G.  

• Instead, the growth rates of the functions need to be 
determined. 

• There is a three-fold reason for basing our analysis on 
the growth rate of the function rather than its specific 
value at some point:
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Comparing Functions 

1. For sufficiently large values of N, the value of the 
function is primarily determined by its dominant term 
(sufficiently large varies by function).

• For example, consider the cubic function expressed by:

15N3 + 20N2 - 10N + 4.

For large values of N, say 1000, the value of this function is: 
15,019,990,004 of which  15,000,000,000 is due entirely to the 
N3 term.

Using only the N3 term to estimate the value of this function 
introduces an error of only 0.1% which is typically close enough
for estimation purposes.
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Comparing Functions (cont.)
2. Constants associated with the dominant term are usually 

not meaningful across different machines (although they 
might be for identically growing functions). 

3. Small values of N are generally not important.

1. constant function – function whose dominant term is a 
constant (c)

2. logarithmic func. – dominant term is log N

3. log-squared func. – dominant term is log2 N

4. linear func. – dominant term is N

5. N log N func. – dominant term is N log N

6. quadratic func. – dominant term is N2

7. cubic func. – dominant term is N3

8. exponential func. – dominant term is 2N
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Measures of Work
• Evaluating and comparing the work required by various 

algorithms is an important component of software 
engineering.

• In fact, it is only by such measures that we can identify 
which of various possible algorithms for a given 
problem is preferable.

• In general, there are three different metrics by which 
algorithms are evaluated:

1. Best case
2. Worst case

3. Average case
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Measures of Work (cont.)

• Consider the following problem:  I give you a set of 
eight coins and a comparator scale (gives relative not 
absolute weights).  I tell you that one of the coins maybe 
counterfeit and that counterfeit coins weigh less than 
real coins.  Your mission (should you decide to accept 
it) is to determine if the set of coins contains a 
counterfeit coin.

• Question:  In terms of the number of comparisons which 
are necessary what is the best case, worst case, and 
average case for this problem?
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Measures of Work (cont.)

• Consider the following problem:  I give you a set of 
eight coins and a comparator scale (gives relative not 
absolute weights).  I tell you that one of the coins maybe 
counterfeit and that counterfeit coins weigh less than 
real coins.  Your mission (should you decide to accept 
it) is to determine if the set of coins contains a 
counterfeit coin.

• Question:  In terms of the number of comparisons which 
are necessary what is the best case, worst case, and 
average case for this problem?
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Measures of Work (cont.)

• First, you need to devise an algorithm that will 
solve the problem.

• Let’s use the following algorithm:  divide the 
set of 8 coins into 4 sets of two coins each.  Put 
a pair of coins on the scale and compare their 
weights.  If they are different, stop – counterfeit 
coin detected; otherwise, repeat process until all 
coins have been compared, stop – no counterfeit 
coin detected.
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Measures of Work (cont.)

• Now let’s analyze our algorithm. 

• Best case performance =

• Worst case performance = 

• Average case performance =

– Note: Worst case performance can occur in two 
different fashions: for determination that a 
counterfeit coin is present and also for determination 
that no counterfeit coin is present.  Best case occurs 
only if a counterfeit coin is present.

1 comparison

4 comparisons

2 comparisons
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Measures of Work (cont.)

• The obvious question at this point is, “can we do 
better?”

• What do we mean by “better”?

• Better best case?  Better worst case?  Better average 
case?  Better for all three?

• Sometimes improving one, improves the others.

• For the algorithm that we started with, the answer is no, 
we cannot do any “better” in terms of reducing the 
number of comparisons in either the best, worst, or 
average cases.

• Let’s try another algorithm.
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Measures of Work (cont.)

• Can you think of a different algorithm to solve 
this problem?

• How about this one:  divide the set of 8 coins 
into 2 sets of four coins each.  Put both sets of 
coins on the scale and compare their weights.  If 
they are different, stop – counterfeit coin 
detected; otherwise, stop – no counterfeit coin 
detected.
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Measures of Work (cont.)

• Now let’s analyze our new algorithm. 

• Best case performance =

• Worst case performance = 

• Average case performance =

1 comparison

1 comparison

1 comparison

Clearly our new algorithm is “better” since both the worst case and the
average case performance require fewer comparisons (our metric in
this example).
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Measures of Work (cont.)

• Now let’s’ slightly modify the original problem to the 
following:  I give you a set of eight coins and a 
comparator scale (gives relative not absolute weights).  I 
tell you that one of the coins maybe counterfeit and that 
counterfeit coins weigh less than real coins.  Your 
mission now is to identify the counterfeit coin if one 
exists in the set.

• Question:  Once again, we’ll analyze our algorithm in 
terms of the number of comparisons which are 
necessary what is the best case, worst case, and average 
case for this problem?
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Measures of Work (cont.)

• Again, we first need to devise an algorithm that will 
solve the problem.

• Let’s use the following algorithm again:  divide the set 
of 8 coins into 2 sets of four coins each.  Put a set of 
coins on the scale and compare their weights.  If they 
are the same – stop – no counterfeit coin is present. If 
they are different, divide the lighter set into two sets of 
two coins each – repeat weighing.  Divide lighter set 
into two sets of 1 coin each – repeat weighing – stop –
lighter coin is the counterfeit coin.
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Measures of Work (cont.)

• Now let’s analyze our algorithm for this problem.

• Best case performance =

• Worst case performance = 

• Average case performance =

1 comparison

3 comparisons

?

• Notice that for this algorithm the best case performance is only
possible if there is no counterfeit coin present.  Similarly, the worst 
case performance will only occur when there is a counterfeit coin 
present.

• The average case depends on the presence or non-presence of a 
counterfeit coin.  Over a large number of executions of the 
algorithm assuming “random data” the average will be 2 
comparisons.
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Random Data

• The discussion of the average number of 
comparisons made by our counterfeit coin 
detector algorithm brings up an important issue 
in algorithm analysis.

• What do we mean when we say that the input 
data is “random” or “average”?

• How does “random” or “average” data compare 
with the “actual” data that we would expect to 
see at run-time?
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Random Data (cont.)

• It turns out that in many instances, the 
assumption that the input data to an algorithm is 
random, is a faulty assumption.

• In order to truly get a handle on what constitutes 
“average  input” we need to be alert to any 
properties of the data or of the operational 
situation in which the algorithm will be 
executed that will impact what constitutes the 
average case.
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Random Data (cont.)

• Consider the following case:  When the phone company 
produces a new phone book for the Orlando area, it 
clearly needs to sort the names that will appear in the 
new version of the phone book in alphabetical order.

• Does the input to the phone book sorting algorithm 
appear as random data?  Obviously not, they do not 
resort the entire listing of names that already appear in 
the phonebook.  Rather they merge the new names into 
the existing names to create one giant sorted set of 
names.

• In other words, most of the data that is being sorted, is 
in fact already sorted.  This is clearly different than truly 
random data and will obviously impact the sort time.
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Asymptotic Notation
• Definition: Let p(n) and q(n) be two nonnegative 

functions.  The function p(n) is asymptotically bigger 
[p(n) asymptotically dominates q(n)] than the function 
q(n) iff

• The function q(n) is asymptotically smaller than p(n) iff
p(n) is asympotically bigger than q(n).

• Functions p(n) and q(n) are asymptotically equal iff
neither is asymptotically bigger than the other.
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Asymptotic Notation (cont.)

• Example:

Let p(n) = 3n2 + 2n + 6 and q(n) = 10n + 7.

divide both functions by n2 (to reduce dominant term to 
a constant) which will produce:

Thus, 3n2 + 2n + 6 is asymptotically bigger than 10n + 
7.  Similarly, 10n + 7 is asymptotically smaller than 3n2

+ 2n + 6.
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Asymptotic Notation (cont.)

• Another Example:

– Let p(n) = 6n + 2 and q(n) = 12n + 6
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Thus, p(n) is asymptotical equal to q(n).
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Asymptotic Notation (cont.)

• Practice Problems:

– Show that: 8n4 + 9n2 is asymptotically bigger than 
100n3 – 3.  

– Show that 8n4 + 9n2 is asymptotically bigger than 
2n2 + 3n and 83n. 
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Big-Oh Notation
• Used to represent the growth rate of a function.

• Allows algorithm designers to establish a relative order 
among functions by comparison of their dominant terms.

• Denoted as O(N2), read as "order N squared".

• constant function – O(1)
• logarithmic func. – O(log N)
• log-squared func. – O(log2 N)
• linear func. – O(N)
• N log N func. – O(N log N)
• quadratic func. – O(N2)
• cubic func. – O(N3)
• exponential func. – O(2N)
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Big-Oh Notation (cont.)

• Notation: f(n) = O(g(n)) [read as f(n) is big-oh of g(n)] 
means that f(n) is asymptotically smaller than or equal to 
g(n).

• Meaning:  g(n) establishes an upper bound on f(n).  The 
asymptotic growth rate of the function f(n) is bounded 
from above by g(n).
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Big-Oh Notation (cont.)

n

Time

m f(n)

cg(n)

g(n) is an upper bound on f(n)


