
COP 3502: Computer Science I (Day 6) Page 1 Mark Llewellyn

COP 3502: Computer Science I
Spring 2004

– Day 6 –
Recursion

School of Electrical Engineering and Computer Science
University of Central Florida

Instructor : Mark Llewellyn
markl@cs.ucf.edu
CC1 211, 823-2790
http://www.cs.ucf.edu/courses/cop3502/spr04

COP 3502: Computer Science I (Day 6) Page 2 Mark Llewellyn

• Many times it will be necessary to trace the
execution of a recursive program. While in many
ways this is similar to tracing any other code,
tracing a recursive program requires a bit more
care and caution.

• The next two pages show recursive functions; let’s
trace their execution.

Tracing Recursive Functions

COP 3502: Computer Science I (Day 6) Page 3 Mark Llewellyn

Tracing Recursive Functions (cont.)

int f (int x, int y)
{
if (x == 0 && y >= 0)

return y + 1;
else if (x > 0 && y == 0)

return (f(x−1,1));
else if (x > 0 && y > 0)

return (f(x−1, f(x, y−1)));
}

the function

Trace for call f(1,3)

x = f(1, 3)
= f(0, f(1, 2))
= f(0, f(0, f(1, 1)))

= f(0, f(0, f(0, f(1,0))))
= f(0, f(0, f(0, f(0,1))))

= f(0, f(0, f(0, 2)))
= f(0, f(0, 3))
= f(0,4)

= 5

the execution trace

COP 3502: Computer Science I (Day 6) Page 4 Mark Llewellyn

Tracing Recursive Functions (cont.)

int f (int x, int y)
{
if (y == 0 || x == y && x >= 0)

return 1;
else

return (f(x−1, y) + f(x−1, y−1));
}

the function

Trace for call f(5,3)

x = f(5, 3)= f(4, 3) + f(4, 2)
= f(3, 3) + f(3, 2) + f(4, 2)
= 1 + f(2, 2) + f(2, 1) + f(4, 2)
= 1 + 1 + f(1, 1) + f(1,0) + f(4, 2)
= 1 + 1 + 1 + 1+ f(3, 2) + f(3, 1)
= 4 + f(2, 2) + f(2, 1) + f(3,1)
= 4 + 1 + f(1, 1) + f(1, 0) + f(3,1)
= 5 + 1 + 1 + f(2, 1) + f(2,0)
= 7 + f(1, 1) + f(1, 0) + f(2, 0)
= 7 + 1 + 1 + 1

= 10

the execution trace

COP 3502: Computer Science I (Day 6) Page 5 Mark Llewellyn

• Below are several practice problems that you
should implement as recursive functions.
Sample solutions are at the end of this set of
notes.

1. Construct a recursive function that returns

2. Construct a recursive function that will count the
number of times a particular character appears in a
string. Example: rcount (‘s’, “Mississippi sassafras”)

Practice Constructing Recursive Functions

∑
=

n

1i

i

COP 3502: Computer Science I (Day 6) Page 6 Mark Llewellyn

• Base or radix 2 number system

• Binary digit is called a bit.

• Numbers are 0 and 1 only.

• Numbers are expressed as powers of 2.

• 20 = 1, 21 = 2, 22 = 4, 23 = 8, 24 = 16, 25 = 32,
26 = 64, 27 = 128, 28 = 256, 29 = 512, 210 = 1024,
211 = 2048, 212 = 4096, 212 = 8192, …

Binary Number System

COP 3502: Computer Science I (Day 6) Page 7 Mark Llewellyn

Conversion of binary to decimal (base 2 to base 10)

Example: convert (1000100)2 to decimal

= (1 x 26) + (0 x 25) + (0 x 24) + (0 x 23) + (1 x 22) + (0 x 21) + (0 x 20)

= 64 + 0 + 0+ 0 + 4 + 0 + 0

= (68)10

Binary Number System (cont.)

COP 3502: Computer Science I (Day 6) Page 8 Mark Llewellyn

Conversion of decimal to binary (base 10 to base 2)

Example: convert (68)10 to binary

68 ÷ 2 = 34 remainder is 0

34 ÷ 2 = 17 remainder is 0

17 ÷ 2 = 8 remainder is 1

8 ÷ 2 = 4 remainder is 0

4 ÷ 2 = 2 remainder is 0

2 ÷ 2 = 1 remainder is 0

1 ÷ 2 = 0 remainder is 1

Answer = 1 0 0 0 1 0 0

Note: the answer is read from bottom (MSB) to top (LSB) as 10001002

Binary Number System (cont.)

COP 3502: Computer Science I (Day 6) Page 9 Mark Llewellyn

• Base or radix 8 number system.

• 1 octal digit is equivalent to 3 bits.

• Octal numbers are 0-7.

• Numbers are expressed as powers of 8.

– 80 = 1, 81 = 8, 82 = 64, 83 = 512, 84 = 4096

Octal Number System

COP 3502: Computer Science I (Day 6) Page 10 Mark Llewellyn

Conversion of octal to decimal (base 8 to base 10)

Example: convert (632)8 to decimal

= (6 x 82) + (3 x 81) + (2 x 80)

= (6 x 64) + (3 x 8) + (2 x 1)

= 384 + 24 + 2

= (410)10

Octal Number System (cont.)

COP 3502: Computer Science I (Day 6) Page 11 Mark Llewellyn

Conversion of decimal to octal (base 10 to base 8)

Example: convert (177)10 to octal

177 ÷ 8 = 22 remainder is 1

22 ÷ 8 = 2 remainder is 6

2 ÷ 8 = 0 remainder is 2

Answer = 2 6 1

Note: the answer is read from bottom to top as (261)8, the same as
with the binary case.

Octal Number System (cont.)

COP 3502: Computer Science I (Day 6) Page 12 Mark Llewellyn

• Base or radix 16 number system.

• 1 hex digit is equivalent to 4 bits.

• Numbers are 0-9, A, B, C, D, E, and F.

– (A)16 = (10)10, (B)16 = (11)10, (C)16 = (12)10,

(D)16 = (13)10, (E)16 = (14)10, (F)16 = (15)10

• Numbers are expressed as powers of 16.

• 160 = 1, 161 = 16, 162 = 256, 163 = 4096, 164 =
65536, …

Hexadecimal Number System

COP 3502: Computer Science I (Day 6) Page 13 Mark Llewellyn

Conversion of hex to decimal (base 16 to base 10)

Example: convert (F4C)16 to decimal

= (F x 162) + (4 x 161) + (C x 160)

= (15 x 256) + (4 x 16) + (12 x 1)

= 3840 + 64 + 12

= (3916)10

Hexadecimal Number System (cont.)

COP 3502: Computer Science I (Day 6) Page 14 Mark Llewellyn

Conversion of decimal to hex (base 10 to base 16)

Example: convert (4768)10 to hex.

= 4768 ÷ 16 = 298 remainder 0

= 298 ÷ 16 = 18 remainder 10 (A)

= 18 ÷ 16 = 1 remainder 2

= 1 ÷ 16 = 0 remainder 1

Answer: 1 2 A 0

Note: the answer is read from bottom to top as (4D)16, the same as with the
binary case.

Hexadecimal Number System (cont.)

COP 3502: Computer Science I (Day 6) Page 15 Mark Llewellyn

Decimal, Binary, Octal, and Hex Numbers
0 0000 0 0

Decimal Binary Octal Hexadecimal

1 0001 1 1

2 0010 2 2

3 0011 3 3

4 0100 4 4

5 0101 5 5

6 0110 6 6

7 0111 7 7

8 1000 10 8

9 1001 11 9

10 1010 12 A

11 1011 13 B

12 1100 14 C

13 1101 15 D

14 1110 16 E

15 1111 17 F

COP 3502: Computer Science I (Day 6) Page 16 Mark Llewellyn

• Conversion of octal and hex numbers to binary is based
upon the the bit patterns shown in the table on page 17
and is straight forward.

• For octal numbers, only three bits are required. Thus 68
= 1102, and 3458 = 111001012.

372548 = 011 111 010 101 1002 = 111110101011002

• For hex numbers, four bits are required. Thus E16 =
11102, and 47D16 = 100011111012.

57DE416 = 0101 0111 1100 1110 01002

= 10101111100111001002

Conversion from Hex or Octal to Binary

COP 3502: Computer Science I (Day 6) Page 17 Mark Llewellyn

• Conversion of binary numbers to octal and hex
simply requires grouping bits in the binary numbers
into groups of three bits for conversion to octal and
into groups of four bits for conversion to hex.

• Groups are formed beginning with the LSB and
progressing to the MSB.

• Thus, 11 100 1112 = 3478

• 11 100 010 101 010 010 0012 = 30252218

• 1110 01112 = E716

• 1 1000 1010 1000 01112 = 18A8716

Conversion from Binary to Hex or Octal

COP 3502: Computer Science I (Day 6) Page 18 Mark Llewellyn

Example:

Carry 1 11 11 11

Addend 10011 10011 10011 10011 10011

Augend + 110 110 110 110 110

Sum 1 01 001 1001 11001

Binary Addition

1011

100

10+

result is 0
with a
carry of 1

COP 3502: Computer Science I (Day 6) Page 19 Mark Llewellyn

Example:

Borrow 01 01 01 0 0

Minuend 10100 10100 10100 10100 10100 10100

Subtrahend - 1001 1001 1001 1001 1001 1001

Difference 1 11 011 1011 01011

Binary Subtraction

011

1 with borrow from next column00

10–

minuend

subtrahend

COP 3502: Computer Science I (Day 6) Page 20 Mark Llewellyn

Octal Addition Table

1615141312111077
151413121110766
14131211107655
1312111076544

11107654322

1076543211

12

7

7

11

6

6

10

5

5

4

1

1

6

3

3

5

2

2

733

400

40+

COP 3502: Computer Science I (Day 6) Page 21 Mark Llewellyn

Octal Addition & Subtraction
Addition Example:

Carry 1 11 11

Addend 1775 1775 1775 1775

Augend + 670 670 670 670

Sum 5 65 665 2665

Subtraction Example: (just like decimal with the borrows)

Borrow 3 13 5

Minuend 1643 1643 1643 1643 1643

Subtrahend - 256 256 256 256 256

Difference 5 65 365 1365

COP 3502: Computer Science I (Day 6) Page 22 Mark Llewellyn

Hexadecimal Addition Table

1E1D1C1B1A191817161514131211100FF

1D1C1B1A191817161514131211100F0EE

1C1B1A191817161514131211100F0E0DD

1B1A191817161514131211100F0E0D0CC

1A191817161514131211100F0E0D0C0BB

191817161514131211100F0E0D0C0B0AA

1817161514131211100F0E0D0C0B0A099

17161514131211100F0E0D0C0B0A09088

16

15

14

13

12

11

10

0F

F

15

14

13

12

11

10

0F

0E

E

14

13

12

11

10

0F

0E

0D

D

13

12

11

10

0F

0E

0D

0C

C

12

11

10

0F

0E

0D

0C

0B

B

11

10

0F

0E

0D

0C

0B

0A

A

10

0F

0E

0D

0C

0B

0A

09

9

0F

0E

0D

0C

0B

0A

09

08

8

0E0D0C0B0A0908077

0D0C0B0A090807066

0C0B0A09080706055

0B0A0908070605044

09080706050403022

08070605040302011

0A

07

7

09

06

6

08

05

5

04

01

1

06

03

3

05

02

2

07033

04000

40+

COP 3502: Computer Science I (Day 6) Page 23 Mark Llewellyn

Hexadecimal Addition & Subtraction
Addition Example:

Carry 1 1

Addend A27 A27 A27 A27

Augend + 3CF 3CF 3CF 3CF

Sum 6 F6 DF6

Subtraction Example: (just like decimal with the borrows)

Borrow B 13 B

Minuend AC3 AC3 AC3 AC3

Subtrahend - 604 604 604 604

Difference F BF 4BF

COP 3502: Computer Science I (Day 6) Page 24 Mark Llewellyn

• There are several alternative conventions that can be used
to represent negative (as well as positive) integers, all of
which involve treating the MSB as a sign bit.

• Typically, if the MSB is 0, the number is positive; if the
MSB is 1, the number is negative.

• The simplest form of representation that employs a sign bit
is the sign-magnitude representation. In an n-bit word, the
right-most n-1 bits represent the magnitude of the integer,
and the left-most bit represents the sign of the integer. For
example, in an 8-bit word the value of +2410 is represented
by: 000110002, while the value of –2410 is represented by
100110002.

Negative Number Representation

COP 3502: Computer Science I (Day 6) Page 25 Mark Llewellyn

• There are several disadvantages to sign magnitude
representation.

• One is that addition and subtraction operations require a
consideration of both the signs of the numbers and their
relative magnitudes to carry out the required operation.

• Another disadvantage is that there are two representations
of 0. Using an 8-bit word, both 000000002 and 100000002
represent 0 (the first +0, the latter –0). This makes logical
testing for equality on 0 more complex (two values need to
be tested).

• Because of these disadvantages, sign-magnitude
representation is rarely used in implementing the integer
portion of the ALU.

Negative Number Representation (cont.)

COP 3502: Computer Science I (Day 6) Page 26 Mark Llewellyn

Two’s Complement

• Like sign-magnitude, two’s complement uses the MSB as
a sign bit, thus making it easy to test if an integer is
positive or negative.

• Two’s complement differs from sign-magnitude in the way
the remaining n-1 bits (of an n-bit word) are interpreted.

• Two’s complement representation has only a single
representation for the value of 0. The two's complement of
a binary number is found by subtracting each bit of the
number from 1 and adding 1.

Negative Number Representation (cont.)

COP 3502: Computer Science I (Day 6) Page 27 Mark Llewellyn

• An alternate way of performing a two’s complementation
(does exactly the same thing the addition does without
thinking about doing the subtraction and the addition) is as
follows:

• Beginning with the LSB and progressing toward the MSB,
leave all 0 bits unchanged and the first 1 bit unchanged,
after encountering the first 1 bit, complement all remaining
bits until the MSB has been processed. The resulting
number is the two’s complement of the original number.

Example:

Binary: 11011000100100 01011011

2’s comp 00100111011100 10100101

Two’s Complement Representation (cont.)

COP 3502: Computer Science I (Day 6) Page 28 Mark Llewellyn

• Two’s complement arithmetic allows you to perform
addition operations when subtraction is the actual desired
operation.

• This means that any expression of the form: A – B can be
computed as A + BC where BC represents the two’s
complement form of B.

• This fact allows the Arithmetic Logic Unit (ALU) inside
the CPU to be more compact since circuitry for subtraction
is not included.

Why Two’s Complement?

COP 3502: Computer Science I (Day 6) Page 29 Mark Llewellyn

• Example using 2’s complement:

Suppose that our problem (in decimal) is: 7 + (-3).

Representing these numbers in 4 bits we have:

710 = 01112 310 = 00112 2’s comp form = 11012

0111

+ 1101

10100 ignoring the overflow (extra bit) we have our answer = 01002 = 410

Why Two’s Complement? (cont.)

COP 3502: Computer Science I (Day 6) Page 30 Mark Llewellyn

• Although it may seem that with two’s complement we
have found nirvana as far as representing negative
numbers inside a computer is concerned, we
unfortunately, have not.

• For any addition operation, the result may be larger
than can be held in the word size of the system. This
condition is called overflow.

• When an overflow occurs, the arithmetic logic unit
(ALU) must signal the control unit (within the CPU)
that an overflow condition exists and no attempt be
made to use the invalid result.

Why Two’s Complement? (cont.)

COP 3502: Computer Science I (Day 6) Page 31 Mark Llewellyn

• To detect overflow, the following rule must be observed:

Why Two’s Complement? (cont.)

If two numbers are added, and they are both positive
or both negative, then overflow occurs if and only if
the result has the opposite sign of the operands to
the addition. Note that overflow can occur whether
or not there is a carry out of the MSB position.

COP 3502: Computer Science I (Day 6) Page 32 Mark Llewellyn

• Example using 2’s complement:

Suppose that our problem (in decimal) is: 7 + (-3).

Representing these numbers in 4 bits we have:

710 = 01112 310 = 00112 2’s comp form = 11012

0111

+ 1101

10100 ignoring the overflow (extra bit) we have our answer = 01002 = 410

Why Two’s Complement? (cont.)

COP 3502: Computer Science I (Day 6) Page 33 Mark Llewellyn

• Example using 2’s complement:

Suppose that our problem (in decimal) is: 27 - 13.

Representing these numbers in 5 bits we have:

2710 =110112 1310 = 011012 2’s comp form = 100112

11011

+ 10011

101110 ignoring the overflow (extra bit) we have our answer

011102 = 1410

(Note we know overflow has occurred since the MSB of the result is different
than that of the operands.)

Why Two’s Complement? (cont.)

COP 3502: Computer Science I (Day 6) Page 34 Mark Llewellyn

Solutions: Practice Constructing Recursive Functions

/* recursively computes the sum of the first n integers */
int sum (int n)
{ if (n == 1)

return n;
else return (n + rsum(n-1));

}

A solution to practice problem #1

COP 3502: Computer Science I (Day 6) Page 35 Mark Llewellyn

Solutions: Practice Constructing Recursive Functions

/* recursively counts the number of occurrences of a */
/* specific character in a given string. */
int rcount (char ch, const char *string)
{ int answer;

if (string[0] == ‘\0’) /*simple case of empty string */
answer = 0;

else if (ch == string[0]) /* first character is a match */
answer = 1 + rcount(ch, &string[1]);

else
answer = rcount(ch, &string[1]);

return (answer);
}

A solution to practice problem #2

