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• Many times it will be necessary to trace the 
execution of a recursive program.  While in many 
ways this is similar to tracing any other code, 
tracing a recursive program requires a bit more 
care and caution.  

• The next two pages show recursive functions; let’s 
trace their execution.

Tracing Recursive Functions
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Tracing Recursive Functions (cont.)

int  f (int x, int y)
{
if (x == 0  && y >= 0)

return y + 1;
else if (x > 0 && y == 0)

return (f(x−1,1));
else if (x > 0 && y > 0)

return (f(x−1, f(x, y−1)));
}

the function

Trace for call f(1,3)

x = f(1, 3)
= f(0, f(1, 2))
= f(0, f(0, f(1, 1)))

= f(0, f(0, f(0, f(1,0))))
= f(0, f(0, f(0, f(0,1))))

= f(0, f(0, f(0, 2)))
= f(0, f(0, 3))
= f(0,4)

= 5

the execution trace
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Tracing Recursive Functions (cont.)

int  f (int x, int y)
{
if (y == 0 || x == y  && x >= 0)

return 1;
else

return (f(x−1, y) + f(x−1, y−1));
}

the function

Trace for call f(5,3)

x = f(5, 3)= f(4, 3) + f(4, 2)
= f(3, 3) + f(3, 2) + f(4, 2)
= 1 + f(2, 2) + f(2, 1) + f(4, 2)
= 1 + 1 + f(1, 1) + f(1,0) + f(4, 2)
= 1 + 1 + 1 + 1+ f(3, 2) + f(3, 1)
= 4 + f(2, 2) + f(2, 1) + f(3,1)
= 4 + 1 + f(1, 1) + f(1, 0) + f(3,1)
= 5 + 1 + 1 + f(2, 1) + f(2,0)
= 7 + f(1, 1) + f(1, 0) + f(2, 0)
= 7 + 1 + 1 + 1

= 10

the execution trace
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• Below are several practice problems that you 
should implement as recursive functions.  
Sample solutions are at the end of this set of 
notes.

1. Construct a recursive function that returns

2. Construct a recursive function that will count the 
number of times a particular character appears in a 
string.  Example: rcount (‘s’, “Mississippi sassafras”) 

Practice Constructing Recursive Functions

∑
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• Base or radix 2 number system

• Binary digit is called a bit.

• Numbers are 0 and 1 only.

• Numbers are expressed as powers of 2.

• 20 = 1, 21 = 2, 22 = 4, 23 = 8, 24 = 16, 25 = 32,         
26 = 64, 27 = 128, 28 = 256, 29 = 512, 210 = 1024, 
211 = 2048, 212 = 4096, 212 = 8192, …

Binary Number System
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Conversion of binary to decimal ( base 2 to base 10)

Example: convert (1000100)2 to decimal

= (1 x 26) + (0 x 25) + (0 x 24) + (0 x 23) + (1 x 22) + (0 x 21) + (0 x  20)

= 64 + 0 + 0+ 0 + 4 + 0 + 0

= (68)10

Binary Number System (cont.)
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Conversion of decimal to binary ( base 10 to base 2)

Example: convert (68)10 to binary

68 ÷ 2 = 34 remainder is 0

34 ÷ 2 = 17 remainder is 0

17 ÷ 2 = 8   remainder is 1

8 ÷ 2 = 4    remainder is 0

4 ÷ 2 = 2    remainder is 0

2 ÷ 2 = 1    remainder is 0

1 ÷ 2 = 0    remainder is 1

Answer = 1 0  0  0  1  0  0

Note:  the answer is read from bottom (MSB) to top (LSB) as 10001002

Binary Number System (cont.)
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• Base or radix 8 number system.

• 1 octal digit is equivalent to 3 bits.

• Octal numbers are 0-7.

• Numbers are expressed as powers of 8.

– 80 = 1, 81 = 8, 82 = 64, 83 = 512, 84 = 4096

Octal Number System
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Conversion of octal to decimal ( base 8 to base 10)

Example: convert (632)8 to decimal

= (6 x 82) + (3 x 81) + (2 x 80)

= (6 x 64) + (3 x 8) + (2 x 1)

= 384 + 24 + 2

= (410)10

Octal Number System (cont.)
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Conversion of decimal to octal ( base 10 to base 8)

Example: convert (177)10 to octal

177 ÷ 8 = 22 remainder is 1

22 ÷ 8 = 2 remainder is 6

2 ÷ 8 =  0 remainder is 2

Answer = 2  6  1

Note:  the answer is read from bottom to top as (261)8, the same as   
with the binary case.

Octal Number System (cont.)
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• Base or radix 16 number system.

• 1 hex digit is equivalent to 4 bits.

• Numbers are 0-9, A, B, C, D, E, and F.

– (A)16 = (10)10, (B)16 = (11)10, (C)16 = (12)10,

(D)16 = (13)10, (E)16 = (14)10, (F)16 = (15)10

• Numbers are expressed as powers of 16.

• 160 = 1, 161 = 16, 162 = 256, 163 = 4096, 164 = 
65536, …

Hexadecimal Number System
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Conversion of hex to decimal ( base 16 to base 10)

Example: convert (F4C)16 to decimal

= (F x 162) + (4 x 161) + (C x 160)

= (15 x 256) + (4 x 16) + (12 x 1)

= 3840 + 64 + 12

= (3916)10

Hexadecimal Number System (cont.)
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Conversion of decimal to hex ( base 10 to base 16)

Example:  convert (4768)10 to hex.

= 4768 ÷ 16 = 298 remainder 0

= 298 ÷ 16 = 18 remainder 10 (A)

= 18 ÷ 16 = 1 remainder 2

= 1 ÷ 16 = 0 remainder 1

Answer:  1  2   A   0

Note:  the answer is read from bottom to top as (4D)16, the same as with the 
binary case.

Hexadecimal Number System (cont.)
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Decimal, Binary, Octal, and Hex Numbers
0 0000 0 0

Decimal Binary Octal Hexadecimal

1 0001 1 1

2 0010 2 2

3 0011 3 3

4 0100 4 4

5 0101 5 5

6 0110 6 6

7 0111 7 7

8 1000 10 8

9 1001 11 9

10 1010 12 A

11 1011 13 B

12 1100 14 C

13 1101 15 D

14 1110 16 E

15 1111 17 F
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• Conversion of octal and hex numbers to binary is based 
upon the the bit patterns shown in the table  on page 17 
and is straight forward.

• For octal numbers, only three bits are required.  Thus 68
= 1102, and 3458 = 111001012.

372548 = 011 111 010 101 1002 = 111110101011002

• For hex numbers, four bits are required.  Thus E16 = 
11102, and 47D16 = 100011111012.

57DE416 = 0101 0111 1100 1110 01002

= 10101111100111001002

Conversion from Hex or Octal to Binary
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• Conversion of binary numbers to octal and hex 
simply requires grouping bits in the binary numbers 
into groups of three bits for conversion to octal and 
into groups of four bits for conversion to hex.

• Groups are formed beginning with the LSB and 
progressing to the MSB.  

• Thus, 11 100 1112 = 3478

• 11 100 010 101 010 010 0012 = 30252218

• 1110 01112 = E716

• 1 1000 1010 1000 01112 = 18A8716

Conversion from Binary to Hex or Octal
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Example:

Carry                               1                   11      11              11

Addend 10011         10011             10011         10011        10011

Augend +   110             110                 110             110  110

Sum                  1               01                 001     1001        11001

Binary Addition

1011

100

10+

result is 0 
with a 
carry of 1
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Example:

Borrow                              01             01           01        0               0                

Minuend 10100        10100     10100      10100      10100      10100

Subtrahend   - 1001          1001       1001        1001        1001         1001

Difference                                1          11         011        1011      01011

Binary Subtraction

011

1 with borrow from next column00

10–

minuend

subtrahend
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Octal Addition Table

1615141312111077
151413121110766
14131211107655
1312111076544

11107654322

1076543211

12

7

7

11

6

6

10

5

5

4

1

1

6

3

3

5

2

2

733

400

40+
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Octal Addition & Subtraction
Addition Example:

Carry                               1                   11      11              

Addend 1775           1775              1775           1775       

Augend +   670             670                670             670   

Sum                 5               65                665       2665      

Subtraction Example: (just like decimal with the borrows)

Borrow                                  3                  13   5

Minuend 1643            1643            1643          1643       1643

Subtrahend   - 256              256              256            256           256

Difference                                5               65    365            1365
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Hexadecimal Addition Table

1E1D1C1B1A191817161514131211100FF

1D1C1B1A191817161514131211100F0EE

1C1B1A191817161514131211100F0E0DD

1B1A191817161514131211100F0E0D0CC

1A191817161514131211100F0E0D0C0BB

191817161514131211100F0E0D0C0B0AA

1817161514131211100F0E0D0C0B0A099

17161514131211100F0E0D0C0B0A09088

16

15

14

13

12

11

10

0F

F

15

14

13

12

11

10

0F

0E

E

14

13

12

11

10

0F

0E

0D

D

13

12

11

10

0F

0E

0D

0C

C

12

11

10

0F

0E

0D

0C

0B

B

11

10

0F

0E

0D

0C

0B

0A

A

10

0F

0E

0D

0C

0B

0A

09

9

0F

0E

0D

0C

0B

0A

09

08

8

0E0D0C0B0A0908077

0D0C0B0A090807066

0C0B0A09080706055

0B0A0908070605044

09080706050403022

08070605040302011

0A

07

7

09

06

6

08

05

5

04

01

1

06

03

3

05

02

2

07033

04000

40+



COP 3502: Computer Science I  (Day 6)              Page 23 Mark Llewellyn

Hexadecimal Addition & Subtraction
Addition Example:

Carry                                 1                   1

Addend A27             A27               A27           A27      

Augend +   3CF            3CF               3CF           3CF       

Sum                                     6                 F6    DF6      

Subtraction Example: (just like decimal with the borrows)

Borrow                                  B 13            B 

Minuend AC3              AC3            AC3          AC3        

Subtrahend   - 604               604             604           604         

Difference                                F               BF    4BF
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• There are several alternative conventions that can be used 
to represent negative (as well as positive) integers, all of 
which involve treating the MSB as a sign bit.

• Typically, if the MSB is 0, the number is positive; if the 
MSB is 1, the number is negative.

• The simplest form of representation that employs a sign bit 
is the sign-magnitude representation.  In an n-bit word, the 
right-most n-1 bits represent the magnitude of the integer, 
and the left-most bit represents the sign of the integer.  For 
example, in an 8-bit word the value of +2410 is represented 
by: 000110002, while the value of –2410 is represented by 
100110002.

Negative Number Representation
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• There are several disadvantages to sign magnitude 
representation.

• One is that addition and subtraction operations require a 
consideration of both the signs of the numbers and their 
relative magnitudes to carry out the required operation.

• Another disadvantage is that there are two representations 
of 0.  Using an 8-bit word, both 000000002 and 100000002
represent 0 (the first +0, the latter –0).  This makes logical 
testing for equality on 0 more complex (two values need to 
be tested).

• Because of these disadvantages, sign-magnitude 
representation is rarely used in implementing the integer 
portion of the ALU.

Negative Number Representation (cont.)
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Two’s Complement

• Like sign-magnitude, two’s complement uses the MSB as 
a sign bit, thus making it easy to test if an integer is 
positive or negative.

• Two’s complement differs from sign-magnitude in the way 
the remaining n-1 bits (of an n-bit word) are interpreted.

• Two’s complement representation has only a single 
representation for the value of 0.  The two's complement of 
a binary number is found by subtracting each bit of the 
number from 1 and adding 1.  

Negative Number Representation (cont.)
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• An alternate way of performing a two’s complementation 
(does exactly the same thing the addition does without 
thinking about doing the subtraction and the addition) is as 
follows:

• Beginning with the LSB and progressing toward the MSB, 
leave all 0 bits unchanged and the first 1 bit unchanged, 
after encountering the first 1 bit, complement all remaining 
bits until the MSB has been processed.  The resulting 
number is the two’s complement of the original number.

Example:  

Binary:       11011000100100                 01011011

2’s comp     00100111011100                 10100101

Two’s Complement Representation (cont.)
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• Two’s complement arithmetic allows you to perform 
addition operations when subtraction is the actual desired 
operation.

• This means that any expression of the form: A – B can be 
computed as A + BC where BC represents the two’s 
complement form of B.

• This fact allows the Arithmetic Logic Unit (ALU) inside 
the CPU to be more compact since circuitry for subtraction 
is not included. 

Why Two’s Complement? 
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• Example using 2’s complement:

Suppose that our problem (in decimal) is:  7 + (-3).

Representing these numbers in 4 bits we have:

710 = 01112            310 = 00112       2’s comp form = 11012

0111

+   1101

10100    ignoring the overflow (extra bit) we have our answer = 01002 = 410

Why Two’s Complement? (cont.)
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• Although it may seem that with two’s complement we 
have found nirvana as far as representing negative 
numbers inside a computer is concerned, we 
unfortunately, have not.

• For any addition operation, the result may be larger 
than can be held in the word size of the system.  This 
condition is called overflow.

• When an overflow occurs, the arithmetic logic unit 
(ALU) must signal the control unit (within the CPU) 
that an overflow condition exists and no attempt be 
made to use the invalid result.  

Why Two’s Complement? (cont.)



COP 3502: Computer Science I  (Day 6)              Page 31 Mark Llewellyn

• To detect overflow, the following rule must be observed:

Why Two’s Complement? (cont.)

If two numbers are added, and they are both positive 
or both negative, then overflow occurs if and only if 
the result has the opposite sign of the operands to 
the addition.  Note that overflow can occur whether 
or not there is a carry out of the MSB position.
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• Example using 2’s complement:

Suppose that our problem (in decimal) is:  7 + (-3).

Representing these numbers in 4 bits we have:

710 = 01112            310 = 00112       2’s comp form = 11012

0111

+   1101

10100    ignoring the overflow (extra bit) we have our answer = 01002 = 410

Why Two’s Complement? (cont.)
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• Example using 2’s complement:

Suppose that our problem (in decimal) is:  27 - 13.

Representing these numbers in 5 bits we have:

2710 =110112            1310 = 011012       2’s comp form = 100112

11011

+   10011

101110  ignoring the overflow (extra bit) we have our answer

011102 = 1410

(Note we know overflow has occurred since the MSB of the result is different 
than that of the operands.)

Why Two’s Complement? (cont.)
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Solutions: Practice Constructing Recursive Functions

/* recursively computes the sum of the first n integers */
int sum (int n)
{    if (n == 1)

return n;
else return (n + rsum(n-1));

}

A solution to practice problem #1
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Solutions: Practice Constructing Recursive Functions

/* recursively counts the number of occurrences of a */
/* specific character in a given string.                        */
int rcount (char ch, const char *string)
{    int answer;

if (string[0] == ‘\0’)       /*simple case of empty string */
answer = 0;

else if (ch == string[0])    /* first character is a match */
answer = 1 + rcount(ch, &string[1]);

else
answer = rcount(ch, &string[1]);

return (answer);
}

A solution to practice problem #2


