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• The art of solving problems existed long before there were 
computers to assist with problem solving.

• Many of the algorithmic strategies employed in 
programming solutions were developed outside the realm 
of computing.

– A task performed repeatedly uses iteration.

– A decision you make exercises conditional control.

• Because repetition and decisions are fairly well-known to 
most humans, you are able to adapt to the use of  for, 
while, and if statements in a programming language 
easily.

Introduction to Recursion
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• On the road to become a good problem-solver you 
will discover that you need more powerful 
problem solving strategies that what for, while, 
and if statements can do for you.

• An important one of these strategies that you will 
need to learn is recursion.  

• Recursion is defined as any solution technique in 
which a large problem is solved by reducing it to 
smaller problems of the same form.

Introduction to Recursion (cont.)
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Problem: Suppose that I have a set of 100,000 numbers that I 
would like to have sorted.

Solution 1: I could sort the entire 100,000 numbers myself 
(not a good solution as I don’t like to sort things!)

Solution 2: I could get the 100 students in the class to each 
sort 1000 of the 100,000 numbers.  When everyone 
finishes sorting their batch of 1000 numbers, I will take the 
100 sorted batches and reassemble them into a sorted list 
of 100,000 numbers (a better solution, because I don’t do 
any sorting at all!)

• Solution 2 is a recursive solution to the problem.  Each of 
the sub-problems is smaller than the original, but has the 
same form as the original problem, i.e., sorting numbers.

A Simple Example of Recursion
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A Simple Example of Recursion (cont.)

6789
2

389
12343

77
986

I’ll never 
get done

100,000 numbers 
to be sorted

1000 numbers 
to be sorted

1000 numbers 
to be sorted

1000 numbers 
to be sorted

x10

combine subproblem solutions

100,000 sorted 
numbers 

It was easy 
using 

recursion!!

iterative solution recursive solution
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A Simple Example of Recursion (cont.)
each have

10 numbers 
to be sorted

x10,000

x1000

each combine the results
from 10 subproblems

solved above

x100

each combine the results
from 10 subproblems

solved above

x10

combine these 10 results

1 happy 
instructor!
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• In general, the body of a recursive function has the 
following form:

Recursive Functions

if (test for simple case)
produce a simple solution without using recursion

else {
break the problem into subproblems of the same form
solve each of the subproblems by calling this function recursively
reassemble the solutions to the subproblems into a complete solution 
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• The form on the previous page can be used as a template 
for defining recursive functions and is thus referred to as 
the recursive paradigm.

• The recursive paradigm can be applied to any 
programming problem which meets the following 
criteria:

1. You must be able to identify the base cases (simple cases) for 
which an answer is easily determined.

2. You must be able to identify a recursive decomposition which 
allows you to break a complex instance of the problem into 
simpler subproblems of the same form.

Recursive Functions (cont.)
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• Consider the definition of the factorial function:

• Let’s use this recursive definition to calculate 4!.

Recursive Functions (cont.)
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Recursive Functions (cont.)
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Recursive Factorial Function in C

/* recursive factorial function                  */
/* assumption is that result fits in a long */
long factorial (int n)
{

if (n == 0)
return 1;

else
return (n * factorial (n-1));

}/*end factorial */
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long factorial (int n)
{     if (n == 0)

return 1;
else

return (n * factorial (n-1));
}/*end factorial */

long factorial (int n)
{     if (n == 0)

return 1;
else

return (n * factorial (n-1));
}/*end factorial */

long factorial (int n)
{     if (n == 0)

return 1;
else

return (n * factorial (n-1));
}/*end factorial */

long factorial (int n)
{     if (n == 0)

return 1;
else

return (n * factorial (n-1));
}/*end factorial */

long factorial (int n)
{     if (n == 0)

return 1;
else

return (n * factorial (n-1));
}/*end factorial */

Calling a Recursive Function

0

1

2

3

4call: f = factorial(4);

1

1

2

6

24
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• All recursive functions have two elements:

1. Each call either solves one part of the problem (base case) or,

2. It reduces the size of the problem (general case).

• In the factorial function, the statement: return 1; solves a 
small piece of the problem, i.e., factorial(0) = 1, while 
the statement: factorial(n-1); reduces the size of the 
problem by recursively calling the factorial function with 
n-1.

Recursive Functions (cont.)
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• Fibonacci numbers can be defined by the following recursive 
function:

• The Fibonacci numbers are: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, …

• The code on the next page is a C implementation of a program to 
print the first n Fibonacci numbers.

• Before you look at the code on the next page, try writing this 
function yourself.

Fibonacci Numbers
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/* This program prints out a Fibonacci series */
#include <stdio.h>

/* function prototypes */
long fib (long num);

int main (void)
{

/* local definitions */
int spacer;
int seriesSize;

/* statements */
printf (“This program prints a Fibonacci series.\n”);
printf (“How many numbers do you want in the series? ”);
scanf (“%d”, &seriesSize);
if (seriesSize <2)

seriesSize = 2;

printf (“First %d Fibonacci numbers are: \n”, seriesSize);
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for (spacer = 0; spacer < seriesSize; spacer++)
{

if (spacer % 5)
printf (“ , %8ld”, fib(spacer));

else
printf (“\n%8ld”, fib(spacer));

}
printf (“\n”);
return 0;

} /*end main */

/* function to calculate fibonacci numbers */
long fib (long num)
{

if (num == 0  || num == 1)
return num;  /*base case */

else
return (fib(num-1) + fib(num-2));

} /*end fib */
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• All other things being equal, a recursive solution to a 
problem will require more time to execute than an 
iterative solution.

• The reason this is true is due to the overhead required to 
manage all of the recursive function calls.  The system 
must maintain the “state” of your program by placing 
activation records on the run-time stack.  An activation 
record contains a copy of the value of all local variables, 
parameters, and the return address of where program 
control will return when the function terminates.

• For programs the require very deep recursion (many 
recursive function calls) it is possible to exhaust the 
memory allocation before a final solution is achieved.

Limitations to Recursion
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• Consider the function we’ve just looked at for producing 
Fibonacci numbers. How many recursive calls are required to 
produce Fibonacci(5)?

Limitations to Recursion (cont.)

fib(5) = fib(4) + fib(3)
fib(4) = fib(3) + fib(2)

fib(3) = fib(2) + fib(1)
fib(2) = fib(1) + fib(0)

fib(1) = 1
fib(0) = 0

fib(1) = 1
fib(2) = fib(1) + fib(0)

fib(1) = 1
fib(0) = 0

fib(3) = fib(2) + fib(1)
fib(2) = fib(1) + fib(0)

fib(1) = 1
fib(0) = 0

fib(1) = 1   

15 calls, 14 recursive +
original call

recursive calls shown in blue
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• The implementation of the Fibonacci series is highly 
inefficient.

• Look at the amount of redundant work that is performed 
in the calculation of Fibonacci(5).

– fib(5) is called 1 time

– fib(4) is called 1 time

– fib(3) is called 2 times

– fib(2) is called 3 times

– fib(1) is called 5 times

– fib(0) is called 3 times

Limitations to Recursion (cont.)
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Limitations to Recursion (cont.)

29,860,70335

2,692,57330

331,160,281

242,785

21,891

1,973

177

15

9

5

3

1

Total Number of Calls

4

3

40

25

20

15

10

5

2

1

Series Size

Table showing the number
of calls required to calculate
different length Fibonacci
series
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• Does this mean that iterative solutions are 
always better than recursive solutions?

Answer:  No.  Many algorithms are easier to 
implement and maintain if they are written 
recursively.  Recursive algorithms can be quite 
efficient as well.  We’ll look at a modified 
version of the Fibonacci function beginning on 
the next page that is much more efficient than 
the version we’ve already seen. Many data 
structures require recursive solutions.

Limitations to Recursion (cont.)
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• You may be tempted after the previous 
discussion of the inefficiency of our recursive 
solution to the Fibonacci series to claim that all 
recursive functions are inefficient.  However, 
you will be incorrect if you take this position.

• The problem with our first Fibonacci function is 
not with the recursion per se, but rather how the 
recursion is used.

• If we adopt a different recursive strategy, we can 
make the inefficiencies of the earlier function 
disappear.

Limitations to Recursion (cont.)
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• As is often the case when dealing with recursion, 
the key to finding a more efficient solution lies 
in adopting a more general approach.

• In the previous algorithm, we directly 
implemented a recursive solution based on a 
recursive definition of the Fibonacci series.

• The Fibonacci series in not the only sequence 
whose terms are defined by the recurrence 
relation:  

Limitations to Recursion (cont.)

2n1nn ttt −− +=
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• Depending on how you select the first two terms 
in this series, you can generate many different 
sequences.

• The Fibonacci sequence is generated when the 
first two terms are 0 and 1.

– 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, …

• If you were to select the first two terms as 2 and 
4 the sequence you would generate would be:

– 2, 4, 6, 10, 16, 26, 42, 68, 110, 178, 288, 466,…

Limitations to Recursion (cont.)
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• You can generate an extremely large number of 
sequences (infinite!) using this same recurrence 
relation.

• The general class of sequences which follow this 
pattern are called additive sequences. 

• Using the concept of an additive sequence 
makes it possible to convert the problem of 
finding the nth term in the Fibonacci sequence 
into the more general problem of finding the nth

term in an additive sequence whose first two 
terms are t0 and t1.

Limitations to Recursion (cont.)
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• An additive sequence function requires 
three arguments: the number of terms of 
interest in the series, and the first two 
terms in the series.

• The C prototype for this function might 
look like the following:

int AdditiveSequence(int n, int t0, int t1);

Limitations to Recursion (cont.)
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• Given such a function, generating the Fibonacci 
series would be straight forward as shown 
below:

int fib(int n)
{

return (AdditiveSequence(n, 0, 1));
}

• The body consists of a single line of code that 
does nothing but call another function, passing 
along the additional arguments. 

• Functions of this sort, are called wrapper 
functions.  Wrapper functions are very common 
in recursive programming.

Limitations to Recursion (cont.)
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• A implementation in C of the AdditiveSequence 
is given below:

int AdditiveSequence (int n, int t0, int t1))
{

if (n == 0)   return (t0);
if (n == 1)   return (t1);
return AdditiveSequence (n-1, t1, t0+t1));

}

• Be sure you understand why this function 
properly determines the elements in an 
additive sequence.

Limitations to Recursion (cont.)
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• Using this AdditiveSequence function, let’s determine 
the value of Fibonacci(6).

fib(6)
= AdditiveSequence (6, 0, 1)
= AdditiveSequence (5, 1, 1)

= AdditiveSequence (4, 1, 2)
= AdditiveSequence (3, 2, 3)

= AdditiveSequence (2, 3, 5)
= AdditiveSequence (1, 5, 8)

= 8

• Notice how much more efficiently the recursion occurs using the 
AdditiveSequence function.  The table on the next page illustrates 
this further. 

Limitations to Recursion (cont.)
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Limitations to Recursion (cont.)

New FunctionOriginal Function

41

36

31

26

21

16

11

6

5

4

3

2

29,860,70335

2,692,57330

331,160,281

242,785

21,891

1,973

177

15

9

5

3

1

Total Number of Calls

4

3

40

25

20

15

10

5

2

1

Series Size

Table showing the
number of calls
required to calculate
different length
Fibonacci series
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• The Towers of Hanoi is a classic problem in recursion.

• According to legend, the monks in a remote mountain 
monastery knew how to predict when the world would 
end.  They had three diamond needles.  Stacked on the 
first diamond needle were 64 gold disks of decreasing 
size.  The monks moved one disk to another needle 
every hour according to the following rules:

1. Only one disk could be moved at a time.

2. A larger disk must never be stacked above a smaller one.

3. One and only one auxiliary needle could be used for the 
intermediate storage of disks.

A Classic Problem in Recursion
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• The legend says that when all 64 disks had been 
transferred to the destination needle, the stars would 
be extinguished and the world would end.

• In other words, the world would end when 264 – 1 
moves have occurred. (By the way, this will take a 
total of 2.1×1015 years to accomplish.  The age of 
the universe is estimated at 4.6×109 years!  So we’re 
safe for a while longer.)

• Since we have less time than the monks we’ll 
examine this problem assuming there are only three 
disks and that the world will not end when we have 
completed their transfer to the destination needle.

A Classic Problem in Recursion (cont.)
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A Simplified Towers of Hanoi Problem

source auxiliary destination
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A Solution to the Towers of Hanoi Problem w/ 3 Disks

source auxiliary destination

start

source auxiliary destination

1

source auxiliary destination

2

source auxiliary destination

3

source auxiliary destination

4
One disk has been moved 
from source to destination 
after a sequence of 4 
moves.
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A Solution to the Towers of Hanoi Problem w/ 3 Disks

source auxiliary destination

5 6

7

Task complete, all disks 
moved to destination 
needle. Total sequence 
required 7 (23-1) moves.

source auxiliary destination

source auxiliary destination
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• Analyze the moves that were made to solve the 
simplified Towers of Hanoi problem.  Can you 
find the pattern?

• If we are to solve this problem recursively we 
will need to identify the base case as well as the 
general case.

• In order to help identify the patterns, let’s look 
at an even simpler form of the problem.

Analyzing the Recursion in the Problem
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• Let’s suppose that we have only one disk.

Analyzing the Problem (cont.)

source auxiliary destination

start

source auxiliary destination

1

Case 1: Move one disk from source to destination needle.
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• Now let’s suppose that we have two disks.

Analyzing the Problem (cont.)

start 1

Case 2:  Move one disk from source to auxiliary needle.
Move one disk from source to destination needle.
Move one disk from auxiliary to destination needle.

source auxiliary destination source auxiliary destination

source auxiliary destination

2

source auxiliary destination

3
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• Now go back and look at how we solved the 
case with three disks.  

• All total, we moved 2 disks from source to 
auxiliary, 1 disk from source to destination, and 
2 disks from auxiliary to destination.

Analyzing the Problem (cont.)

Case 3:  Move two disks from source to auxiliary needle.
Move one disk from source to destination needle.
Move two disks from auxiliary to destination needle.



COP 3502: Computer Science I  (Day 5)              Page 40 Mark Llewellyn

• Hopefully, by now you begin to see the pattern 
in solving this problem.  

• To generalize the problem we have the 
following:

Analyzing the Problem (cont.)

1:  Move n-1 disks from source to auxiliary needle. (general case )

2:  Move one disk from source to destination needle. (base case )

3:  Move n-1 disks from auxiliary to destination needle. (general case)
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• Unlike the factorial and Fibonacci problems we saw 
earlier, the Towers of Hanoi problem has two general 
cases (i.e., two recursive cases) to solve and not just one.  

• This will translate into two different recursive calls when 
we construct our algorithm and its implementation in C.

• The solution that we’ll develop will construct a function 
with four parameters: the number of disks to be moved, 
the source needle, the destination needle, and the 
auxiliary needle.

• In pseudocode the three cases are:
1. Call Towers (n-1, source, auxiliary, destination)
2. Move one disk from source to destination
3. Call Towers (n-1, auxiliary, destination, source)

Analyzing the Problem (cont.)
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• Notice the third step:  After completing the 
move of the first  disk, the remaining disks are 
on the auxiliary needle.  We need to move them 
from the auxiliary needle to the destination 
needle.  In this case, the original source needle 
becomes the auxiliary needle.

• The next page shows a C function to solve the 
Towers of Hanoi problem.  Before looking at 
this code in great detail, try to write the function 
yourself.

Analyzing the Problem (cont.)



COP 3502: Computer Science I  (Day 5)              Page 43 Mark Llewellyn

/* Solve Towers of Hanoi Problem                                */
/* Assume: n disks with source, destination, & auxiliary needles given */
void towers (int n, char source, char dest, char auxiliary)
{

/* local definitions */
static int step = 0;
/* statements */
printf(“Towers (%d, %c, %c, %c) \n”, n, source, dest, auxiliary);
if (n == 1)

printf (“\t\t\t\tStep %3d: Move from %c to %c\n”, ++step, source, dest);
else
{    towers (n-1,  source, auxiliary, dest);

printf (“\t\t\t\tStep %3d: Move from %c to %c\n”, ++step, source, dest);
towers (n-1, auxiliary, dest, source);

} /*end else */
return;

} /*end towers */
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Calls: Output:
Towers (3, S, D, A)
Towers (2, S, A, D)
Towers (1, S, D, A)

Step 1: Move from S to D 
Step 2: Move from S to A

Towers (1, D, A, S)
Step 3: Move from D to A
Step 4: Move from S to D

Towers (2, A, D, S)
Towers (1, A, S, D)

Step 5: Move from A to S
Step 6: Move from A to D

Towers (1, S, D, A)
Step 7: Move from S to D

Solution for 3 Disk Towers of Hanoi Problem


