
COP 3502: Computer Science I (Day 5) Page 1 Mark Llewellyn

COP 3502: Computer Science I
Spring 2004

– Day 5 –
Recursion

School of Electrical Engineering and Computer Science
University of Central Florida

Instructor : Mark Llewellyn
markl@cs.ucf.edu
CC1 211, 823-2790
http://www.cs.ucf.edu/courses/cop3502/spr04

COP 3502: Computer Science I (Day 5) Page 2 Mark Llewellyn

• The art of solving problems existed long before there were
computers to assist with problem solving.

• Many of the algorithmic strategies employed in
programming solutions were developed outside the realm
of computing.

– A task performed repeatedly uses iteration.

– A decision you make exercises conditional control.

• Because repetition and decisions are fairly well-known to
most humans, you are able to adapt to the use of for,
while, and if statements in a programming language
easily.

Introduction to Recursion

COP 3502: Computer Science I (Day 5) Page 3 Mark Llewellyn

• On the road to become a good problem-solver you
will discover that you need more powerful
problem solving strategies that what for, while,
and if statements can do for you.

• An important one of these strategies that you will
need to learn is recursion.

• Recursion is defined as any solution technique in
which a large problem is solved by reducing it to
smaller problems of the same form.

Introduction to Recursion (cont.)

COP 3502: Computer Science I (Day 5) Page 4 Mark Llewellyn

Problem: Suppose that I have a set of 100,000 numbers that I
would like to have sorted.

Solution 1: I could sort the entire 100,000 numbers myself
(not a good solution as I don’t like to sort things!)

Solution 2: I could get the 100 students in the class to each
sort 1000 of the 100,000 numbers. When everyone
finishes sorting their batch of 1000 numbers, I will take the
100 sorted batches and reassemble them into a sorted list
of 100,000 numbers (a better solution, because I don’t do
any sorting at all!)

• Solution 2 is a recursive solution to the problem. Each of
the sub-problems is smaller than the original, but has the
same form as the original problem, i.e., sorting numbers.

A Simple Example of Recursion

COP 3502: Computer Science I (Day 5) Page 5 Mark Llewellyn

A Simple Example of Recursion (cont.)

6789
2

389
12343

77
986

I’ll never
get done

100,000 numbers
to be sorted

1000 numbers
to be sorted

1000 numbers
to be sorted

1000 numbers
to be sorted

x10

combine subproblem solutions

100,000 sorted
numbers

It was easy
using

recursion!!

iterative solution recursive solution

COP 3502: Computer Science I (Day 5) Page 6 Mark Llewellyn

A Simple Example of Recursion (cont.)
each have

10 numbers
to be sorted

x10,000

x1000

each combine the results
from 10 subproblems

solved above

x100

each combine the results
from 10 subproblems

solved above

x10

combine these 10 results

1 happy
instructor!

COP 3502: Computer Science I (Day 5) Page 7 Mark Llewellyn

• In general, the body of a recursive function has the
following form:

Recursive Functions

if (test for simple case)
produce a simple solution without using recursion

else {
break the problem into subproblems of the same form
solve each of the subproblems by calling this function recursively
reassemble the solutions to the subproblems into a complete solution

COP 3502: Computer Science I (Day 5) Page 8 Mark Llewellyn

• The form on the previous page can be used as a template
for defining recursive functions and is thus referred to as
the recursive paradigm.

• The recursive paradigm can be applied to any
programming problem which meets the following
criteria:

1. You must be able to identify the base cases (simple cases) for
which an answer is easily determined.

2. You must be able to identify a recursive decomposition which
allows you to break a complex instance of the problem into
simpler subproblems of the same form.

Recursive Functions (cont.)

COP 3502: Computer Science I (Day 5) Page 9 Mark Llewellyn

• Consider the definition of the factorial function:

• Let’s use this recursive definition to calculate 4!.

Recursive Functions (cont.)

>−×
=

=
0nif1nfactorialn

0nif1
nfactorial

)(
)(

10factorial

0factorial11factorial

1factorial22factorial

2factorial33factorial

3factorial44factorial

=

×=

×=

×=

×=

)(

)()(

)()(

)()(

)()(

COP 3502: Computer Science I (Day 5) Page 10 Mark Llewellyn

Recursive Functions (cont.)

10factorial

0factorial11factorial

1factorial22factorial

2factorial33factorial

3factorial44factorial

=

×=

×=

×=

×=

)(

)()(

)()(

)()(

)()(

1 × 1 = 1

2 × 1 = 2

3 × 2 = 6

4 × 6 =24

start here

STOP

base case, recursion ends

re
cu

rs
iv

e
ca

lls
 h

ea
de

d
to

 b
as

e
ca

se
assem

bly of subproblem
s

COP 3502: Computer Science I (Day 5) Page 11 Mark Llewellyn

Recursive Factorial Function in C

/* recursive factorial function */
/* assumption is that result fits in a long */
long factorial (int n)
{

if (n == 0)
return 1;

else
return (n * factorial (n-1));

}/*end factorial */

COP 3502: Computer Science I (Day 5) Page 12 Mark Llewellyn

long factorial (int n)
{ if (n == 0)

return 1;
else

return (n * factorial (n-1));
}/*end factorial */

long factorial (int n)
{ if (n == 0)

return 1;
else

return (n * factorial (n-1));
}/*end factorial */

long factorial (int n)
{ if (n == 0)

return 1;
else

return (n * factorial (n-1));
}/*end factorial */

long factorial (int n)
{ if (n == 0)

return 1;
else

return (n * factorial (n-1));
}/*end factorial */

long factorial (int n)
{ if (n == 0)

return 1;
else

return (n * factorial (n-1));
}/*end factorial */

Calling a Recursive Function

0

1

2

3

4call: f = factorial(4);

1

1

2

6

24

COP 3502: Computer Science I (Day 5) Page 13 Mark Llewellyn

• All recursive functions have two elements:

1. Each call either solves one part of the problem (base case) or,

2. It reduces the size of the problem (general case).

• In the factorial function, the statement: return 1; solves a
small piece of the problem, i.e., factorial(0) = 1, while
the statement: factorial(n-1); reduces the size of the
problem by recursively calling the factorial function with
n-1.

Recursive Functions (cont.)

COP 3502: Computer Science I (Day 5) Page 14 Mark Llewellyn

• Fibonacci numbers can be defined by the following recursive
function:

• The Fibonacci numbers are: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, …

• The code on the next page is a C implementation of a program to
print the first n Fibonacci numbers.

• Before you look at the code on the next page, try writing this
function yourself.

Fibonacci Numbers

>−+−
==

=
1nif)2n(Fibonacci)1n(Fibonacci

1nor0nifn
)n(Fibonacci

COP 3502: Computer Science I (Day 5) Page 15 Mark Llewellyn

/* This program prints out a Fibonacci series */
#include <stdio.h>

/* function prototypes */
long fib (long num);

int main (void)
{

/* local definitions */
int spacer;
int seriesSize;

/* statements */
printf (“This program prints a Fibonacci series.\n”);
printf (“How many numbers do you want in the series? ”);
scanf (“%d”, &seriesSize);
if (seriesSize <2)

seriesSize = 2;

printf (“First %d Fibonacci numbers are: \n”, seriesSize);

COP 3502: Computer Science I (Day 5) Page 16 Mark Llewellyn

for (spacer = 0; spacer < seriesSize; spacer++)
{

if (spacer % 5)
printf (“ , %8ld”, fib(spacer));

else
printf (“\n%8ld”, fib(spacer));

}
printf (“\n”);
return 0;

} /*end main */

/* function to calculate fibonacci numbers */
long fib (long num)
{

if (num == 0 || num == 1)
return num; /*base case */

else
return (fib(num-1) + fib(num-2));

} /*end fib */

COP 3502: Computer Science I (Day 5) Page 17 Mark Llewellyn

• All other things being equal, a recursive solution to a
problem will require more time to execute than an
iterative solution.

• The reason this is true is due to the overhead required to
manage all of the recursive function calls. The system
must maintain the “state” of your program by placing
activation records on the run-time stack. An activation
record contains a copy of the value of all local variables,
parameters, and the return address of where program
control will return when the function terminates.

• For programs the require very deep recursion (many
recursive function calls) it is possible to exhaust the
memory allocation before a final solution is achieved.

Limitations to Recursion

COP 3502: Computer Science I (Day 5) Page 18 Mark Llewellyn

• Consider the function we’ve just looked at for producing
Fibonacci numbers. How many recursive calls are required to
produce Fibonacci(5)?

Limitations to Recursion (cont.)

fib(5) = fib(4) + fib(3)
fib(4) = fib(3) + fib(2)

fib(3) = fib(2) + fib(1)
fib(2) = fib(1) + fib(0)

fib(1) = 1
fib(0) = 0

fib(1) = 1
fib(2) = fib(1) + fib(0)

fib(1) = 1
fib(0) = 0

fib(3) = fib(2) + fib(1)
fib(2) = fib(1) + fib(0)

fib(1) = 1
fib(0) = 0

fib(1) = 1

15 calls, 14 recursive +
original call

recursive calls shown in blue

COP 3502: Computer Science I (Day 5) Page 19 Mark Llewellyn

• The implementation of the Fibonacci series is highly
inefficient.

• Look at the amount of redundant work that is performed
in the calculation of Fibonacci(5).

– fib(5) is called 1 time

– fib(4) is called 1 time

– fib(3) is called 2 times

– fib(2) is called 3 times

– fib(1) is called 5 times

– fib(0) is called 3 times

Limitations to Recursion (cont.)

COP 3502: Computer Science I (Day 5) Page 20 Mark Llewellyn

Limitations to Recursion (cont.)

29,860,70335

2,692,57330

331,160,281

242,785

21,891

1,973

177

15

9

5

3

1

Total Number of Calls

4

3

40

25

20

15

10

5

2

1

Series Size

Table showing the number
of calls required to calculate
different length Fibonacci
series

COP 3502: Computer Science I (Day 5) Page 21 Mark Llewellyn

• Does this mean that iterative solutions are
always better than recursive solutions?

Answer: No. Many algorithms are easier to
implement and maintain if they are written
recursively. Recursive algorithms can be quite
efficient as well. We’ll look at a modified
version of the Fibonacci function beginning on
the next page that is much more efficient than
the version we’ve already seen. Many data
structures require recursive solutions.

Limitations to Recursion (cont.)

COP 3502: Computer Science I (Day 5) Page 22 Mark Llewellyn

• You may be tempted after the previous
discussion of the inefficiency of our recursive
solution to the Fibonacci series to claim that all
recursive functions are inefficient. However,
you will be incorrect if you take this position.

• The problem with our first Fibonacci function is
not with the recursion per se, but rather how the
recursion is used.

• If we adopt a different recursive strategy, we can
make the inefficiencies of the earlier function
disappear.

Limitations to Recursion (cont.)

COP 3502: Computer Science I (Day 5) Page 23 Mark Llewellyn

• As is often the case when dealing with recursion,
the key to finding a more efficient solution lies
in adopting a more general approach.

• In the previous algorithm, we directly
implemented a recursive solution based on a
recursive definition of the Fibonacci series.

• The Fibonacci series in not the only sequence
whose terms are defined by the recurrence
relation:

Limitations to Recursion (cont.)

2n1nn ttt −− +=

COP 3502: Computer Science I (Day 5) Page 24 Mark Llewellyn

• Depending on how you select the first two terms
in this series, you can generate many different
sequences.

• The Fibonacci sequence is generated when the
first two terms are 0 and 1.

– 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, …

• If you were to select the first two terms as 2 and
4 the sequence you would generate would be:

– 2, 4, 6, 10, 16, 26, 42, 68, 110, 178, 288, 466,…

Limitations to Recursion (cont.)

COP 3502: Computer Science I (Day 5) Page 25 Mark Llewellyn

• You can generate an extremely large number of
sequences (infinite!) using this same recurrence
relation.

• The general class of sequences which follow this
pattern are called additive sequences.

• Using the concept of an additive sequence
makes it possible to convert the problem of
finding the nth term in the Fibonacci sequence
into the more general problem of finding the nth

term in an additive sequence whose first two
terms are t0 and t1.

Limitations to Recursion (cont.)

COP 3502: Computer Science I (Day 5) Page 26 Mark Llewellyn

• An additive sequence function requires
three arguments: the number of terms of
interest in the series, and the first two
terms in the series.

• The C prototype for this function might
look like the following:

int AdditiveSequence(int n, int t0, int t1);

Limitations to Recursion (cont.)

COP 3502: Computer Science I (Day 5) Page 27 Mark Llewellyn

• Given such a function, generating the Fibonacci
series would be straight forward as shown
below:

int fib(int n)
{

return (AdditiveSequence(n, 0, 1));
}

• The body consists of a single line of code that
does nothing but call another function, passing
along the additional arguments.

• Functions of this sort, are called wrapper
functions. Wrapper functions are very common
in recursive programming.

Limitations to Recursion (cont.)

COP 3502: Computer Science I (Day 5) Page 28 Mark Llewellyn

• A implementation in C of the AdditiveSequence
is given below:

int AdditiveSequence (int n, int t0, int t1))
{

if (n == 0) return (t0);
if (n == 1) return (t1);
return AdditiveSequence (n-1, t1, t0+t1));

}

• Be sure you understand why this function
properly determines the elements in an
additive sequence.

Limitations to Recursion (cont.)

COP 3502: Computer Science I (Day 5) Page 29 Mark Llewellyn

• Using this AdditiveSequence function, let’s determine
the value of Fibonacci(6).

fib(6)
= AdditiveSequence (6, 0, 1)
= AdditiveSequence (5, 1, 1)

= AdditiveSequence (4, 1, 2)
= AdditiveSequence (3, 2, 3)

= AdditiveSequence (2, 3, 5)
= AdditiveSequence (1, 5, 8)

= 8

• Notice how much more efficiently the recursion occurs using the
AdditiveSequence function. The table on the next page illustrates
this further.

Limitations to Recursion (cont.)

COP 3502: Computer Science I (Day 5) Page 30 Mark Llewellyn

Limitations to Recursion (cont.)

New FunctionOriginal Function

41

36

31

26

21

16

11

6

5

4

3

2

29,860,70335

2,692,57330

331,160,281

242,785

21,891

1,973

177

15

9

5

3

1

Total Number of Calls

4

3

40

25

20

15

10

5

2

1

Series Size

Table showing the
number of calls
required to calculate
different length
Fibonacci series

COP 3502: Computer Science I (Day 5) Page 31 Mark Llewellyn

• The Towers of Hanoi is a classic problem in recursion.

• According to legend, the monks in a remote mountain
monastery knew how to predict when the world would
end. They had three diamond needles. Stacked on the
first diamond needle were 64 gold disks of decreasing
size. The monks moved one disk to another needle
every hour according to the following rules:

1. Only one disk could be moved at a time.

2. A larger disk must never be stacked above a smaller one.

3. One and only one auxiliary needle could be used for the
intermediate storage of disks.

A Classic Problem in Recursion

COP 3502: Computer Science I (Day 5) Page 32 Mark Llewellyn

• The legend says that when all 64 disks had been
transferred to the destination needle, the stars would
be extinguished and the world would end.

• In other words, the world would end when 264 – 1
moves have occurred. (By the way, this will take a
total of 2.1×1015 years to accomplish. The age of
the universe is estimated at 4.6×109 years! So we’re
safe for a while longer.)

• Since we have less time than the monks we’ll
examine this problem assuming there are only three
disks and that the world will not end when we have
completed their transfer to the destination needle.

A Classic Problem in Recursion (cont.)

COP 3502: Computer Science I (Day 5) Page 33 Mark Llewellyn

A Simplified Towers of Hanoi Problem

source auxiliary destination

COP 3502: Computer Science I (Day 5) Page 34 Mark Llewellyn

A Solution to the Towers of Hanoi Problem w/ 3 Disks

source auxiliary destination

start

source auxiliary destination

1

source auxiliary destination

2

source auxiliary destination

3

source auxiliary destination

4
One disk has been moved
from source to destination
after a sequence of 4
moves.

COP 3502: Computer Science I (Day 5) Page 35 Mark Llewellyn

A Solution to the Towers of Hanoi Problem w/ 3 Disks

source auxiliary destination

5 6

7

Task complete, all disks
moved to destination
needle. Total sequence
required 7 (23-1) moves.

source auxiliary destination

source auxiliary destination

COP 3502: Computer Science I (Day 5) Page 36 Mark Llewellyn

• Analyze the moves that were made to solve the
simplified Towers of Hanoi problem. Can you
find the pattern?

• If we are to solve this problem recursively we
will need to identify the base case as well as the
general case.

• In order to help identify the patterns, let’s look
at an even simpler form of the problem.

Analyzing the Recursion in the Problem

COP 3502: Computer Science I (Day 5) Page 37 Mark Llewellyn

• Let’s suppose that we have only one disk.

Analyzing the Problem (cont.)

source auxiliary destination

start

source auxiliary destination

1

Case 1: Move one disk from source to destination needle.

COP 3502: Computer Science I (Day 5) Page 38 Mark Llewellyn

• Now let’s suppose that we have two disks.

Analyzing the Problem (cont.)

start 1

Case 2: Move one disk from source to auxiliary needle.
Move one disk from source to destination needle.
Move one disk from auxiliary to destination needle.

source auxiliary destination source auxiliary destination

source auxiliary destination

2

source auxiliary destination

3

COP 3502: Computer Science I (Day 5) Page 39 Mark Llewellyn

• Now go back and look at how we solved the
case with three disks.

• All total, we moved 2 disks from source to
auxiliary, 1 disk from source to destination, and
2 disks from auxiliary to destination.

Analyzing the Problem (cont.)

Case 3: Move two disks from source to auxiliary needle.
Move one disk from source to destination needle.
Move two disks from auxiliary to destination needle.

COP 3502: Computer Science I (Day 5) Page 40 Mark Llewellyn

• Hopefully, by now you begin to see the pattern
in solving this problem.

• To generalize the problem we have the
following:

Analyzing the Problem (cont.)

1: Move n-1 disks from source to auxiliary needle. (general case)

2: Move one disk from source to destination needle. (base case)

3: Move n-1 disks from auxiliary to destination needle. (general case)

COP 3502: Computer Science I (Day 5) Page 41 Mark Llewellyn

• Unlike the factorial and Fibonacci problems we saw
earlier, the Towers of Hanoi problem has two general
cases (i.e., two recursive cases) to solve and not just one.

• This will translate into two different recursive calls when
we construct our algorithm and its implementation in C.

• The solution that we’ll develop will construct a function
with four parameters: the number of disks to be moved,
the source needle, the destination needle, and the
auxiliary needle.

• In pseudocode the three cases are:
1. Call Towers (n-1, source, auxiliary, destination)
2. Move one disk from source to destination
3. Call Towers (n-1, auxiliary, destination, source)

Analyzing the Problem (cont.)

COP 3502: Computer Science I (Day 5) Page 42 Mark Llewellyn

• Notice the third step: After completing the
move of the first disk, the remaining disks are
on the auxiliary needle. We need to move them
from the auxiliary needle to the destination
needle. In this case, the original source needle
becomes the auxiliary needle.

• The next page shows a C function to solve the
Towers of Hanoi problem. Before looking at
this code in great detail, try to write the function
yourself.

Analyzing the Problem (cont.)

COP 3502: Computer Science I (Day 5) Page 43 Mark Llewellyn

/* Solve Towers of Hanoi Problem */
/* Assume: n disks with source, destination, & auxiliary needles given */
void towers (int n, char source, char dest, char auxiliary)
{

/* local definitions */
static int step = 0;
/* statements */
printf(“Towers (%d, %c, %c, %c) \n”, n, source, dest, auxiliary);
if (n == 1)

printf (“\t\t\t\tStep %3d: Move from %c to %c\n”, ++step, source, dest);
else
{ towers (n-1, source, auxiliary, dest);

printf (“\t\t\t\tStep %3d: Move from %c to %c\n”, ++step, source, dest);
towers (n-1, auxiliary, dest, source);

} /*end else */
return;

} /*end towers */

COP 3502: Computer Science I (Day 5) Page 44 Mark Llewellyn

Calls: Output:
Towers (3, S, D, A)
Towers (2, S, A, D)
Towers (1, S, D, A)

Step 1: Move from S to D
Step 2: Move from S to A

Towers (1, D, A, S)
Step 3: Move from D to A
Step 4: Move from S to D

Towers (2, A, D, S)
Towers (1, A, S, D)

Step 5: Move from A to S
Step 6: Move from A to D

Towers (1, S, D, A)
Step 7: Move from S to D

Solution for 3 Disk Towers of Hanoi Problem

