
COP 3502: Computer Science I (Day 4) Page 1 Mark Llewellyn

COP 3502: Computer Science I
Spring 2004

– Day 4 –
Applications of Pointers in C

School of Electrical Engineering and Computer Science
University of Central Florida

Instructor : Mark Llewellyn
markl@cs.ucf.edu
CC1 211, 823-2790
http://www.cs.ucf.edu/courses/cop4710/spr2004

COP 3502: Computer Science I (Day 4) Page 2 Mark Llewellyn

• Arrays and pointers have a very close relationship. The
name of an array is a pointer constant to the first element
of the array.

• Because the array’s name is a pointer constant, its value
cannot be changed.

• Since the array name is a pointer constant to the first
element, the address of the first element and the name of
the array both represent the same location in memory.

• When an array name is de-referenced, it refers only to the
first element, not the whole array.

– Thus if a is the name of an array then a and &a[0] are the same.

Arrays and Pointers

COP 3502: Computer Science I (Day 4) Page 3 Mark Llewellyn

• Let’s use the following array for a couple of
examples.

Arrays and Pointers (cont.)

2 4 6 8 10

a

a[0] a[1] a[2] a[3] a[4]

this element is
called a[0] or *a

This array was created with the following code:

int a[5] = {2, 4, 6, 8, 10};

COP 3502: Computer Science I (Day 4) Page 4 Mark Llewellyn

Example 1: De-reference of Array Name

2 4 6 8 10

a

a[0] a[1] a[2] a[3] a[4]

this element is
called a[0] or *a

#include <stdio.h>
int main (void)
{ int a[5] = {2,4,6,8,10};

printf(“%d%d”,*a, a[0]);
return 0;

}

Code

2 2
Output

COP 3502: Computer Science I (Day 4) Page 5 Mark Llewellyn

Example 2: Array Names as Pointers

#include <stdio.h>
int main (void)
{ int a[5] = {2,4,6,8,10};

int *p = a;
int i = 0;
printf(“%d%d\n”,a[i], *p);
return 0;

}

Code

2 2
Output

2 4 6 8 10

a

a[0] a[1] a[2] a[3] a[4]

p

COP 3502: Computer Science I (Day 4) Page 6 Mark Llewellyn

Example 2: Multiple Array Pointers

#include <stdio.h>
int main (void)
{ int a[5] = {2,4,6,8,10};

int p;
p = &a[1];
printf(“%d%d\n”, a[0], p[-1]);
printf(“%d%d\n”, a[1], p[0]);
return 0;

}

Code

2 2
4 4

Output

2 4 6 8 10

a

a[0] a[1] a[2] a[3] a[4]

p

this is
a[0]

this is
p[0]

COP 3502: Computer Science I (Day 4) Page 7 Mark Llewellyn

• Besides indexing, another method for moving through an
array is pointer arithmetic.

• Pointer arithmetic offers a restricted set of arithmetic
operators for manipulating the addresses in pointers. It is
especially powerful when you need to move through an
array from element to element such as in a sequential
search.

• As shown in the previous example, if we have an array
named a, then a is a constant pointing to the first element
and a+1 is a constant pointing to the second element.
Again, if we have a pointer p, pointing to the second
element of an array, then p-1 is a pointer to the previous
(first) element and p+1 would be a pointer to the next
(third) element.

Pointer Arithmetic and Pointers

COP 3502: Computer Science I (Day 4) Page 8 Mark Llewellyn

• It does not matter how a and p are defined or initialized; as
long as they are pointing to one of the elements of the
array, we can add or subtract to get the address of the other
elements in the array.

• The meaning of adding or subtracting here is different
from normal arithmetic. When you add an integer n to a
pointer value, you will get a value that corresponds to
another index location, n elements away. In other words, n
is an offset from the original pointer.

Pointer Arithmetic and Pointers (cont.)

Given pointer p, p ± n is a pointer to the value n elements away.

COP 3502: Computer Science I (Day 4) Page 9 Mark Llewellyn

• To determine the new value, C must know the size of one
element in the array. Recall that the size of the element is
determined by the type of the pointer. This is one of the
primary reasons that pointers of different types cannot be
assigned to each other.

• If the offset is 1, then C can simply add or subtract one
element size from the current pointer value. This may
make the access more efficient that the corresponding
index notation.

• If the offset is more than 1, then C must compute the offset
by multiplying the offset by the element size and
adding/subtracting it to/from the pointer value.

Pointer Arithmetic and Pointers (cont.)

address = pointer + (offset * element size)

COP 3502: Computer Science I (Day 4) Page 10 Mark Llewellyn

Example: Array Element Offsets

char a[3];
int b[3];
float c[3];

a

a+1

a+2

100

101

102

memory
addresses

b

b+1

b+2

100

104

108

memory
addresses

c

c+1

c+2

100

106

112

memory
addresses

Assumption:
char = 1 byte
int = 4 bytes
float = 6 bytes

Adding 1 to c moves 6 bytes
deeper into the memory.
Similarly adding 2 moves 12
bytes deeper into memory.

COP 3502: Computer Science I (Day 4) Page 11 Mark Llewellyn

Example: Dereferencing Array Pointers

22

44

66

88

1010

1212

a[0] or *(a + 0)

a[1] or *(a + 1)

a[2] or *(a + 2)

a[3] or *(a + 3)

a[4] or *(a + 4)

a[5] or *(a + 5)

array a

a

a +1

a + 2

a + 3

a + 4

a + 5

When a is the name of an array and n is an integer: *(a + n) ≡ a[n]

COP 3502: Computer Science I (Day 4) Page 12 Mark Llewellyn

/* print an array in forward direction by adding 1 to a pointer and then print the */
/* same array in backwards direction by subtracting 1 from a pointer. */
#include <stdio.h>
#define MAX_SIZE 10
int main (void)
{ int myarray = {2, 4, 6, 8, 10, 12, 14, 16, 18, 20};

int *pWalk;
int *pEnd;
/* forward direction */
printf(“Array forward: “);
for (pWalk = myarray, pEnd = myarray + MAX_SIZE; pWalk < pEnd; pWalk++)

printf(“%3d”, *pWalk);
printf(“\n”);
/* backward direction */
printf(”Array backward: “);
for(pWalk = pEnd-1; pWalk >= myarray; pWalk--)

printf(“%3d”, *pWalk);
printf(“\n”);
return 0;

} /*end main */

COP 3502: Computer Science I (Day 4) Page 13 Mark Llewellyn

• Just as was the case with one-dimensional arrays,
the name of the array is a pointer constant to the
first element of the array. In the case of a 2d
array, the first element is another array.

• Assuming that we have a 2d array of integers,
when we dereference the array name, we don’t get
one integer, we get an array of integers.

– In other words, the dereference of the array name of a
2d array is a pointer to a one dimensional array.

Pointers and Two-Dimensional Arrays

COP 3502: Computer Science I (Day 4) Page 14 Mark Llewellyn

Pointers and Two-Dimensional Arrays
(cont.)

table

table + 1

table + 2

table[0] or *(table + 0)

table[1] or *(table + 1)

table[2] or *(table + 2)

int table[3][4]

table[0] is identical to *(table + 0).

table[0][0] is identical to *(*(table)).

COP 3502: Computer Science I (Day 4) Page 15 Mark Llewellyn

• When dealing with multi-dimensional arrays, there is no
simple pointer notation.

• To refer to a row, dereference the array point, which gives
a pointer to a row.

– example: table[0] ≡ *(table + 0)

• Given a pointer to a row, dereference the row pointer,
which gives a pointer to an individual element.

– example: table[0][0] ≡ *(*(table))

• The code examples on the next page illustrate how to print
the elements of a 2-d array using both index and pointer
notation.

Pointers and Two-Dimensional Arrays
(cont.)

COP 3502: Computer Science I (Day 4) Page 16 Mark Llewellyn

/* print a 2-d array using index notation */
/* using example array from page 14 */
…
for (i = 0; i < 3; i++)
{ for (j = 0; j < 4; j++)

printf(“%6d”, table[i][j]);
printf(“\n”);

} /* end for loop on i */
…

/* print a 2-d array using pointer notation */
/* using example array from page 14 */
…
for (i = 0; i < 3; i++)
{ for (j = 0; j < 4; j++)

printf(“%6d”, *(*(table + i) +j));
printf(“\n”);

} /* end for loop on i */
…

With multi-dimensional arrays, pointer arithmetic has no efficiency
advantage over indexing. Because pointer notation for multi-dimensional
arrays is so complex and there is no efficiency advantage, most
programmers find it easier to use the index notation.

COP 3502: Computer Science I (Day 4) Page 17 Mark Llewellyn

• Since we know that the name of an array is
actually a pointer to the first element, we can send
the array name to a function for processing.

• When passing the array, do not use the address
operator. Since the array name is a pointer
constant, it is already an address to the first
element of the array.

• An example of a typical call is: doIt (myarray);

Passing an Array to a Function

COP 3502: Computer Science I (Day 4) Page 18 Mark Llewellyn

The called program can declare the array in one of two ways.

1. It can use the traditional array notation. This format has
the advantage of telling the user very clearly that we are
dealing with an array rather than a single pointer.

§ example: int doIt (int myarray[])

2. It can also declare the array in the function header as a
simple pointer. The disadvantage of this format is that,
while it is technically correct, it actually masks the data
structure. However, for one-dimensional arrays it is
very commonly used, although a good descriptive name
for the parameter should be used to indicate it is an array
that is being referenced.

§ example: int doIt (int *anArray)

Passing an Array to a Function (cont.)

COP 3502: Computer Science I (Day 4) Page 19 Mark Llewellyn

• If a multi-dimensional array is being passed as a
parameter to a function, you must use the array
notation in the header declaration and definition.

• The compiler needs to know the size of the
dimensions after the first to calculate the offset
for pointer arithmetic.

• Thus, for a 3-d array, you would use the
following declaration in the function’s header:

float doIt (int bigArray [] [12] [7])

Passing an Array to a Function (cont.)

COP 3502: Computer Science I (Day 4) Page 20 Mark Llewellyn

• Let’s look at an example of passing an array to a
function. In the code on the next page, the function
multiplies each element of a passed array by 2.

• The variables needed are shown below:

Example: Passing an Array to a Function

main

myArray

multiply

pArray

pWalk

pLast

5

size

COP 3502: Computer Science I (Day 4) Page 21 Mark Llewellyn

/* read integers from the keyboard into an array and then print the array with the */
/* values doubled from the original input values. */
#include <stdio.h>
#define SIZE 5
/* PROTOTYPES */
void multiply (int *pArray, int size);
int main (void)
{ int myArray[SIZE];

int *pWalk;
int *pLast;
pLast = myArray + SIZE – 1;
for (pWalk = myArray; pWalk <= pLast; pWalk++)
{ printf(“Please enter an integer number: ”);

scanf(“%d”, pWalk);
}
multiply (myArray, SIZE);
printf(”Doubled value of array elements are: \n “);
for(pWalk = myArray; pWalk <= pLast; pWalk++)

printf(“%3d”, *pWalk);
return 0;

} /*end main */

COP 3502: Computer Science I (Day 4) Page 22 Mark Llewellyn

/* MULTIPLY FUNCTION */
/* Assumes array is filled with integer values. SIZE is number of elements */
/* Doubles the values in the array. */
void multiply (int *pArray, int size)
{ int *pWalk;

int *pLast;
pLast = pArray + size – 1;
for (pWalk = pArray; pWalk <= pLast; pWalk++)
{

*pWalk = *pWalk * 2;
}
return;

} /*end multiply */

COP 3502: Computer Science I (Day 4) Page 23 Mark Llewellyn

• As data structure definitions become more complex, their
declarations become increasingly complicated. Sometimes
declarations are difficult to interpret, even for someone
well experienced in the C language.

• To help you read and understand complicated declarations,
remember the right-left rule.

• Using the right-left rule to interpret a declaration, you start
with the identifier in the center of a declaration and read
the declaration by alternatively going right and then left
until you have read all the entities.

Deciphering Complex Declarations

COP 3502: Computer Science I (Day 4) Page 24 Mark Llewellyn

• The figure below graphically illustrated the right-
left rule.

Deciphering Complex Declarations
(cont.)

6 54 3

identifier

2 1start here

0

COP 3502: Computer Science I (Day 4) Page 25 Mark Llewellyn

• Let’s look at some simple examples to begin
with before trying more complex examples.

1. Declaration: int x

Read as: “x is # an integer.”

Why:

Examples: Deciphering Complex Declarations

x #int

2 1start here

0

is just a place
holder to show that
there is no entity to
be considered. It is
ignored when read.

since there is nothing
on the right, just go left

COP 3502: Computer Science I (Day 4) Page 26 Mark Llewellyn

2. Declaration: int *p

Read as: “p is # a pointer # to integer.”

Why:

Examples: Deciphering Complex Declarations
(cont.)

#int

4 3

p #*

2 1start here

0

COP 3502: Computer Science I (Day 4) Page 27 Mark Llewellyn

3. Declaration: int table [4]

Read as: “table is an array of 4 integers.”

Why:

Examples: Deciphering Complex Declarations
(cont.)

table [4]int

2 1start here

0

COP 3502: Computer Science I (Day 4) Page 28 Mark Llewellyn

4. Declaration: int table [4][5]

Read as: “table is a [4][5] array of integers.”

Why:

Examples: Deciphering Complex Declarations
(cont.)

table [4][5]int

2 1start here

0

For multi-
dimensional
arrays, all
dimensions are
considered as a
single syntactic
element

COP 3502: Computer Science I (Day 4) Page 29 Mark Llewellyn

5. Declaration: int *aryofPtrs[5]

Read as: “aryofPtrs is an array of 5 pointers to #
integer.”

Why:

Examples: Deciphering Complex Declarations
(cont.)

#int

4 3

aryofPtrs [5]*

2 1start here

0

COP 3502: Computer Science I (Day 4) Page 30 Mark Llewellyn

6. Declaration: int (*PtrtoArray)[5]

Read as: “PtrtoArray is a # pointer to an array
of 5 integers.”

Why:

Examples: Deciphering Complex Declarations
(cont.)

[5]int

4 3

PtrtoArray #*

2 1start here

0

COP 3502: Computer Science I (Day 4) Page 31 Mark Llewellyn

7. Declaration: int doIt (...)

Read as: “doIt is a function returning an
integer.”

Why:

Examples: Deciphering Complex Declarations
(cont.)

doIt (...)int

2 1start here

0

COP 3502: Computer Science I (Day 4) Page 32 Mark Llewellyn

8. Declaration: int * doIt (int)

Read as: “doIt is a function returning a pointer to
an integer.”

Why:

Examples: Deciphering Complex Declarations
(cont.)

#int

4 3

doIt (int)*

2 1start here

0

COP 3502: Computer Science I (Day 4) Page 33 Mark Llewellyn

• Static memory allocation requires that the
declaration and definition of memory be fully
specified in the source program. The number of
bytes reserved cannot be changed during
execution.

• Dynamic memory allocation uses predefined
functions to allocate and release memory for data
while the program is in execution. This
effectively postpones data definition until run
time.

Memory Allocation Functions

COP 3502: Computer Science I (Day 4) Page 34 Mark Llewellyn

Memory Allocation (cont.)

Memory Allocation

using declarations
and definitions

static dynamic

using predefined
functions

COP 3502: Computer Science I (Day 4) Page 35 Mark Llewellyn

• Four memory management functions are used with
dynamic memory in the C language.

– malloc, calloc, and realloc are used for memory allocation.

– free is used to return allocated memory to the system when it is no
longer needed.

• All the memory management functions are found in the
standard library header file <stdlib.h>.

Memory Allocation Functions (cont.)

memory management

mallocmalloc calloccalloc reallocrealloc freefree

COP 3502: Computer Science I (Day 4) Page 36 Mark Llewellyn

• Conceptually, memory is divided into:

– program memory which is used for main and all called functions,
and

– data memory which is used for global data, constants, local
definitions and dynamic memory.

• Obviously, main must be in memory at all times. Each
called function must only be in memory while it or any of
its called functions are active. Since multiple copies of a
function may be active at one time (recursion) the multiple
copies of the variables are maintained on the stack. The
heap memory is unused memory allocated to the program
and available to be assigned during execution.

• The next page illustrates the conceptual view of memory.

Memory Allocation Functions (cont.)

COP 3502: Computer Science I (Day 4) Page 37 Mark Llewellyn

Conceptual View of Memory

Program Memory

main called and standard
functions

Data Memory

global program heap system stack

Memory

COP 3502: Computer Science I (Day 4) Page 38 Mark Llewellyn

• The malloc function allocates a block of memory
that contains the number of bytes specified in its
parameter. It returns a void pointer to the first
byte of the allocated memory.

Typical malloc call:

Memory Allocation: malloc

if (!(ptr = (int *) malloc(sizeof(int))))
/*no memory available */
exit(100);

/*memory available */
...

one integer

ptr

COP 3502: Computer Science I (Day 4) Page 39 Mark Llewellyn

• The calloc function is primarily used to allocate memory
for arrays. It differs from malloc in three ways:

1. It allocates a contiguous block of memory large enough to
contain an array of elements of a specified size. It requires two
parameters, the first for the number of elements to be allocated
and the second for the size of each element.

2. It returns a pointer to the first element of the allocated array.
Since it is pointing to an array, the size associated with its
pointer is the size of one element, not the entire array.

3. It clears memory by setting each location in the array to 0,
although 0 is not guaranteed to be the null value for types other
than integer.

Memory Allocation: calloc

COP 3502: Computer Science I (Day 4) Page 40 Mark Llewellyn

Memory Allocation: calloc (cont.)

Typical calloc call:

if (!(ptr = (int *) calloc(200, sizeof(int))))
/*no memory available */
exit(100);

/*memory available */
...

ptr

......
200 integers

COP 3502: Computer Science I (Day 4) Page 41 Mark Llewellyn

• The realloc function can be highly inefficient and
therefore should be used advisedly. When given a
pointer to a previously allocated block of memory,
realloc changes the size of the block by deleting or
extending the memory at the end of the block.

• If the memory cannot be extended because of other
allocations, realloc allocates a completely new block,
copies the existing memory allocation to the new
allocation, and deletes the old allocation.

• The programmer must ensure that any other pointers to
the data are correctly changes.

Memory Allocation: realloc

COP 3502: Computer Science I (Day 4) Page 42 Mark Llewellyn

Memory Allocation: realloc (cont.)

Typical realloc call:

ptr = (int *) realloc(ptr, 10 * sizeof(int));

ptr

2424 5555 1313 66 4848 5656
6 integers

ptr

2424 5555 1313 66 4848 5656
10 integers in new allocation

Before

After

?? ?? ?? ??

new elements
not initialized

COP 3502: Computer Science I (Day 4) Page 43 Mark Llewellyn

• When memory locations allocated by malloc, calloc, or
realloc are no longer needed, they should be freed using the
free function.

• Note that it is not the pointers that are being released but
rather what they point to.

• To release an array of memory allocated by calloc, you need
only to release the pointer once. It is an error to attempt to
release each element individually.

• Releasing memory does not change the value in a pointer. It
still contains the address in the heap. It is a logic error to use
the pointer after memory has been released. It is good
programming practice to clear the pointer by setting it to
NULL immediately after the memory is released.

Memory Allocation: free

