
COP 3502: Computer Science I (Day 3) Page 1 Mark Llewellyn

COP 3502: Computer Science I
Spring 2004

– Day 3 –
A Review of Pointers in C

School of Electrical Engineering and Computer Science
University of Central Florida

Instructor : Mark Llewellyn
markl@cs.ucf.edu
CC1 211, 823-2790
http://www.cs.ucf.edu/courses/cop4710/spr2004

COP 3502: Computer Science I (Day 3) Page 2 Mark Llewellyn

• A pointer is a derived data type; that is, it is a data type
built from one of the standard types.

• Its value is any of the addresses available in the computer
for storing and accessing data.

• Pointers are built on the basic concept of pointer constants.

• Pointer constants are drawn from the set of addresses for a
computer. They exist by themselves and cannot be
changed by a programmer, they can only be used by the
programmer.

A Review of Pointers in C

COP 3502: Computer Science I (Day 3) Page 3 Mark Llewellyn

Pointer Constants

‘M’

Memory pointer
constants

(1 MB memory)

000000
•
•
•

145595
145600
145601

•
•
•

1048575

220 = 1048576

char achar;
achar = ‘M’;

145600

COP 3502: Computer Science I (Day 3) Page 4 Mark Llewellyn

• In the previous slide we’ve declared a variable named
achar of type char and assigned this variable the value
of ‘M’.

• At the time our program was loaded into memory for
execution, the variable was assigned the location
referenced by pointer constant 145600. This binding will
remain in effect throughout the execution of our program.
The next time the program is executed, this variable could
be referenced by pointer constant 876050, or some other
location in memory.

• Therefore, even though the addresses are constant, we
cannot know what they will be and it is necessary to refer
to them symbolically.

Pointer Constants (cont.)

COP 3502: Computer Science I (Day 3) Page 5 Mark Llewellyn

• The address operator (&) provides a pointer constant to
any named location in memory.

• Whenever you need a pointer value, you need only to use
this operator.

• To print an address from a printf statement use the %p
conversion/formatting operator.

• The sample program on the next page declares two
character variables and prints their addresses (as pointer
value). Try running this program on various computers to
see what the results are like. Also try running it several
times on the same system to see the results.

Pointer Constants (cont.)

COP 3502: Computer Science I (Day 3) Page 6 Mark Llewellyn

/* print character addresses */
#include <stdio.h>
int main (void)
{

/* local definitions */
char a;
char b;

/* processing statements */
printf (“%p %p\n”, &a, &b);
return 0;

} /* end main */

Pointer Constant Example

COP 3502: Computer Science I (Day 3) Page 7 Mark Llewellyn

• Our discussion thus far has used characters as the data type
to which our pointer is referencing. How does the picture
change if the data type is changed to integer?

• On most computers, integers occupy either 2 or 4 bytes.
Let’s assume we are using a system with 4-byte integers.
This means that every integer occupies four memory
locations.

• In most computer systems the location of the first byte is
used as the memory address of the variable.

• For characters which occupy only 1 byte, its location is its
address. For integer, the address is the first byte of the
four memory locations that are used to hold the integer
value.

Pointers to Integers

COP 3502: Computer Science I (Day 3) Page 8 Mark Llewellyn

Pointer Constants to Integers

00000000

00000000

00000000

00000111

Memory pointer
constants

(1 MB memory)

000000
•
•
•

145595
145600
145601145601

•
•
•

1048575

220 = 1048576

int myint;
myint = 7;

145600

145601

145602

145603

COP 3502: Computer Science I (Day 3) Page 9 Mark Llewellyn

§ Base or radix 2 number system

§ Binary digit is called a bit.

§ Numbers are 0 and 1 only.

§ Numbers are expressed as powers of 2.

§ 20 = 1, 21 = 2, 22 = 4, 23 = 8, 24 = 16, 25 = 32,
26 = 64, 27 = 128, 28 = 256, 29 = 512, 210 =
1024, 211 = 2048, 212 = 4096, 212 = 8192, …

Super Brief Review of Binary Numbers

COP 3502: Computer Science I (Day 3) Page 10 Mark Llewellyn

Example: convert (110010)2 to decimal

(110010)2

= (1 x 25) + (1 x 24) + (0 x 23) + (0 x 22) + (1 x 21) + (1 x 20)

= 32 + 16 + 0 + 0 + 2 + 0

= (50)10

Conversion of Binary to Decimal

COP 3502: Computer Science I (Day 3) Page 11 Mark Llewellyn

Example: convert (50)10 to binary

50 ÷ 2 = 25 remainder is 0

25 ÷ 2 = 12 remainder is 1

12 ÷ 2 = 6 remainder is 0

6 ÷ 2 = 3 remainder is 0

3 ÷ 2 = 1 remainder is 1

1 ÷ 2 = 0 remainder is 1

Answer = 1 1 0 0 1 0

Note: the answer is read from bottom (MSB) to top (LSB)
as 1100102

Conversion of Decimal to Binary

COP 3502: Computer Science I (Day 3) Page 12 Mark Llewellyn

Decimal, Binary, Octal, and Hex Numbers
0 0000 0 0

Decimal Binary Octal Hexadecimal

1 0001 0 1

2 0010 0 2

3 0011 0 3

4 0100 0 4

5 0101 0 5

6 0110 0 6

7 0111 0 7

8 1000 10 8

9 1001 11 9

10 1010 12 A

11 1011 13 B

12 1100 14 C

13 1101 15 D

14 1110 16 E

15 1111 17 F

COP 3502: Computer Science I (Day 3) Page 13 Mark Llewellyn

• If we have a pointer constant and a pointer value, then we
can have a pointer variable.

• This means that we can store the address of a variable into
another variable, which is then called a pointer variable.

• You need to be able to distinguish between a variable and
its value. This distinction is shown on the next slide.

• If you have a pointer variable in C and you do not want it
to reference any valid memory location, C provides the
special pointer constant NULL in the <stdio.h> library.

Pointer Variables

COP 3502: Computer Science I (Day 3) Page 14 Mark Llewellyn

Pointer Variables (cont.)

physical representation logical representation

-123-123a 234560

address of
variable a

p 234560234560

pointer
variable

&a stored in
variable p

-123-123a

p

COP 3502: Computer Science I (Day 3) Page 15 Mark Llewellyn

Multiple Pointer Variables

logical representation

p

234560234560

-123-123a

234560234560

q

234560

pointer is: &a

value of q is
address of a

COP 3502: Computer Science I (Day 3) Page 16 Mark Llewellyn

• Once you have a variable and a pointer to that variable, the
question becomes: how do I relate the two, or in other
words, how do I use the pointer?

• Answer: Use the indirection operator (*) in C. This is a
unary operator whose operand must be a pointer value.

• When you deference a pointer, you are using its value to
reference (address) another variable. The result is an
expression that can be used to access the pointed variable
for the purposed of inspection or alteration.

• Using the previous example, suppose we want to add 1 to
the value of a. Then any of the following statements will
work (assuming p = &a):

a++; a = a + 1; *p = *p +1; (*p)++;

Accessing Variables Through Pointers

COP 3502: Computer Science I (Day 3) Page 17 Mark Llewellyn

before statement after

??
p

q x
x = 4; 44

p

q x

44
p

q x
x = x + 3;

77
p

q x

77
p

q x
*p = 8; 88

p

q x

88
p

q x
*&x = *q + *p; 1616p

q x

1616p

q x
x = *q * *p; 256256p

q x

multiply
operator

COP 3502: Computer Science I (Day 3) Page 18 Mark Llewellyn

• The symbol used for the indirection operator is also used
as a syntactic token to indicate the declaration of a pointer
variable.

• The format in C is:

• The next slide illustrates the declaration of several
different pointer variables. Their corresponding data
variables are also shown for comparison.

Declaring Pointers

typetype ** identifier

pointer type

COP 3502: Computer Science I (Day 3) Page 19 Mark Llewellyn

235235

a

n

MM

x 3.1453.145

char a;

int n;

float x;

p

q

r

char *p;

int *q;

float *r;

COP 3502: Computer Science I (Day 3) Page 20 Mark Llewellyn

• The C language does not initialize variables. When the
program begins execution, all uninitialized variables have
unknown garbage in them.

• The same is true for pointers. When the program begins
execution, uninitialized pointers will contain some
unknown value that will be interpreted as a memory
address.

– Most likely, this value will either not be a valid address on the
computer system you are using, or if it is, it will not be valid for
the memory which has been allocated to your program. If the
address does not exist, you will get an immediate run-time error. If
it is a valid address, you often, but unfortunately not always, get a
run-time error. (Its better to get the error when you use an invalid
pointer than to have the program execute in error.

Initializing Pointers

COP 3502: Computer Science I (Day 3) Page 21 Mark Llewellyn

• One of the more common errors in programming,
particularly by beginning programmers, but also
by professional programmers, is uninitialized
pointers.

• These are very difficult errors to debug because
the effect of the error is often delayed until later in
the program’s execution.

• Uninitialized pointers and the solution to this
problem is illustrated in the next slide.

Initializing Pointers (cont.)

COP 3502: Computer Science I (Day 3) Page 22 Mark Llewellyn

Initializing Pointers (cont.)

int a;

to prevent
uninitialized pointers

int *p; p

a ??????

??????

?

some garbage:
unknown value

different garbage:
pointer to unknown

location

int a: /* int variable */
int *p = &a; /* p is valid */
p = 89; / a = 89 */

COP 3502: Computer Science I (Day 3) Page 23 Mark Llewellyn

• The C language uses the pass-by-value concept
exclusively. This makes for a very useful application for
pointers.

• The only direct way to return something back from a
function is through the return value.

• Pass by reference can be simulated by passing an address
and using it to refer back to data in the calling program.
This is typically called pass by address.

– Every time you want a called function to have access to a variable
in the calling function, send the address of that variable to the
called function and use the indirection operator to access it.

Pointers and Functions

COP 3502: Computer Science I (Day 3) Page 24 Mark Llewellyn

Pointers and Functions
/* prototypes */
void exchange (int x, int y):
int main (void)
{ int a = 5;

int b = 9;
exchange(a,b);
printf(“%d %d\n”, a, b);
return 0;

} /*end main */

void exchange(int x, int y)
{ int temp;

temp = x;
x = y;
y = temp;
return;

} /* end exchange */

/* prototypes */
void exchange (int *, int *):
int main (void)
{ int a = 5;

int b = 9;
exchange(&a, &b);
printf(“%d %d\n”, a, b);
return 0;

} /*end main */

void exchange(int *x, int *y)
{ int temp;

temp = *x;
*x = *y;
*y = temp;
return;

} /* end exchange */

Which
program
correctly

exchanges
the values
of a and b?

ANSWER

COP 3502: Computer Science I (Day 3) Page 25 Mark Llewellyn

• The example on the previous page showed a
function which accepted pointers as a parameter.
It is also quite common for a called function to
return a pointer to the calling function.

• The example on the next slide shows a function
that determines the smaller of two integer values
and returns a pointer to the smaller value.

Functions Returning Pointers

COP 3502: Computer Science I (Day 3) Page 26 Mark Llewellyn

Example: Functions Returning Pointers

/* prototypes */
int *smaller (int *num1, int *num2);
int main (void)
{ int a;

int b;
int *p;
scanf (“%d %d”, &a, &b);
p = smaller (&a, &b);

}

int *smaller (int *px, int *py)
{

return (*px < *py ? px : py);
}

px py

&a or &b&a or &b
p

a b

COP 3502: Computer Science I (Day 3) Page 27 Mark Llewellyn

• When you return a pointer, it must point to data in
the calling function or a higher level function.

• It is an error to return a pointer to a local variable
in the called function, because when the function
terminates, its memory may be used by other parts
of the program.

• In general, it is a serious error to return a pointer
to a local variable.

Functions Returning Pointers (cont.)

COP 3502: Computer Science I (Day 3) Page 28 Mark Llewellyn

• It is possible, and with advanced data structures
often necessary, to use pointers that point to other
pointers.

• Using a single pointer to a data value is called
indirection. When you use pointers to pointers it
is called multiple-level indirection. There is no
limit to the number of levels of indirection that
you can use. Practically speaking, using more
than two or three levels of indirection is rare.

Pointers to Pointers

COP 3502: Computer Science I (Day 3) Page 29 Mark Llewellyn

Pointers to Pointers (cont.)

/* declarations */
int a;
int *p;
int **q;
/* statements */
a = 69;
p = &a;
q = &p;
printf(“ %3d %3d %3d”, a, *p, **q);

q p a

234560234560 297641297641 6969

398780 234560 297641

pointer to pointer
to integer

pointer to
integer

integer
variable

double deference: a single
deference of q would be
referencing p which is a pointer
to an integer.

output of printf statement is:
69 69 69

COP 3502: Computer Science I (Day 3) Page 30 Mark Llewellyn

• It is important to remember that pointers have a
type associated with them. They are not just
pointer types, but rather pointers to a specific type,
such as an integer.

• Each pointer therefore takes on the attributes of
the type to which is refers in addition to its own
attributes.

• This is demonstrated by the program on the
following slide, which prints the size of a pointer
and the value to which it refers.

Pointer Compatibility

COP 3502: Computer Science I (Day 3) Page 31 Mark Llewellyn

#include <stdio.h>
int main(void)
{ /* local definitions */

char c;
char *pc;
int sizeofc = sizeofc;
int sizeofpc = sizeof(pc);
int sizeofStarpc = sizeof(*pc);
int a;
int *pa;
int sizeof a = sizeof(a);
int sizeofpa = sizeof(pa);
int sizeofStarpa = sizeof(*pa);
double x;
double *px;
intsizeofx = sizeof(x);
intsizeofpx = sizeof(px);
intsizeofStarpx = sizeof(*px);

COP 3502: Computer Science I (Day 3) Page 32 Mark Llewellyn

/* statements */
printf(“sizeof(c): %3d | ” sizeofc);
printf(“sizeof(pc): %3d | ”, sizeofpc);
printf(“sizeof(*pc): %3d\n”, sizeofStarpc);
printf(“sizeof(a): %3d | ” sizeofa);
printf(“sizeof(pa): %3d | ”, sizeofpa);
printf(“sizeof(*pa): %3d\n”, sizeofStarpa);
printf(“sizeof(x): %3d | ” sizeofx);
printf(“sizeof(px): %3d | ”, sizeofpx);
printf(“sizeof(*px): %3d\n”, sizeofStarpx);
return 0;

} /* end main */

OUTPUT:

sizeof(c): 1 | sizeof(pc): 4 | sizeof(*pc): 1
sizeof(a): 2 | sizeof(pa): 4 | sizeof(*pa): 2
sizeof(x): 12 | sizeof(px): 4 | sizeof(*px): 12

COP 3502: Computer Science I (Day 3) Page 33 Mark Llewellyn

• What is the code in the previous example telling us about
pointers?

– Note that variables a,c, and x are never assigned values. This
means that the sizes are independent of whatever value may be in
the variable. In other words, the sizes are dependent on type not
value!

– Notice that the size of the pointers is 4 in all cases, which is the
size of an address on the computer on which the program was
executed.

– Notice that the size of the type that the pointer is referring to is the
same as the data size. This means that the in addition to the size of
the pointer, the system also knows the size of whatever the pointer
is pointing to.

Explanation of Previous Example

COP 3502: Computer Science I (Day 3) Page 34 Mark Llewellyn

• With one exception, it is invalid to assign a pointer of one
type to a pointer of another type, even though the values in
both cases are memory addresses and would therefore
seem to be fully compatible.

– Although the addresses may be compatible because they are drawn
from the same set, what is not compatible is the underlying data
type of the referenced object.

• The exception to the rule is the void pointer (also called the
universal pointer or generic pointer). It can be used with
any pointer, and any pointer can be assigned to a void
pointer. However, since a void pointer has no object type,
it cannot be de-referenced. [void *pVoid;]

Explanation of Previous Example (cont.)

COP 3502: Computer Science I (Day 3) Page 35 Mark Llewellyn

• You can make an explicit assignment between
incompatible pointer types by using a cast, just as you can
cast an int to a float.

• Given the following code, unless all operations that use p
involve the same cast, who knows what the results may be!

int a;
int *p;

p = (char *)&a;

Casting Pointers

STOP
Casting pointers is a very dangerous operation
and should be done only with a very carefully
thought-out design. Otherwise you have a high
potential for creating mounds of garbage!

STOP

COP 3502: Computer Science I (Day 3) Page 36 Mark Llewellyn

• As a final example of using pointers and functions
together, try writing the code for the following
problem yourself, before you look at the solution
on the following slide.

Problem:

Write a simple function that will convert a time
given in seconds into hours, minutes, and seconds.

A Final Example

COP 3502: Computer Science I (Day 3) Page 37 Mark Llewellyn

/* given time in seconds convert it to hours, minutes */
/* and seconds. return 1 on success and 0 on failure */
int secondsToHours(long time,

int *hours,
int *minutes,
int *seconds)

{ /* local definitions */
long localTime;

/* statements */
localTime = time;
*seconds = localTime % 60;
localTime = localTime / 60;
*minutes = localTime % 60;
*hours = localTime / 60;
if (*hours > 24)

return 0; /* error in time */
else

return 1; /* successful time conversion */
} /* end secondsToHours */

COP 3502: Computer Science I (Day 3) Page 38 Mark Llewellyn

A Final Note on Functions

Good Programming Style Tip #1

Create local variables when a value parameter will be changed within
a function so that the original value will always be available for
processing.

Good Programming Style Tip #2

When several values need to be returned to the calling function, use
address parameters for all of them. Do not return one value and use
address parameters for the others. Use the return for some other
reason, such as a status flag, or make the return void.

