
COP 3502: Computer Science I (Day 2) Page 1 Mark Llewellyn

COP 3502: Computer Science I
Spring 2004

-Day 2 – January 7, 2004 –
Introduction to Algorithms

School of Electrical Engineering and Computer Science
University of Central Florida

Instructor : Mark Llewellyn
markl@cs.ucf.edu
CC1 211, 823-2790
http://www.cs.ucf.edu/courses/cop4710/spr2004

COP 3502: Computer Science I (Day 2) Page 2 Mark Llewellyn

• Computers are devices that do only one kind of thing:
They carry out algorithms to process information.

• To computer scientists, the algorithm is the central
unifying concept of computing, the mode of thought
that is the core of the computing perspective.

• What is an algorithm?

– A set of logical steps to accomplish a task.

– A “recipe of action”.

– A way of describing behavior.

What is an Algorithm?

COP 3502: Computer Science I (Day 2) Page 3 Mark Llewellyn

Everyday Algorithms
Recipe for Chocolate Chip Cookies

Ingredients:
2 ¼ cups flour1 tsp salt
1 tsp baking soda2 eggs
¾ cup brown sugar1 tsp vanilla extract
¾ cup granulated sugar1 cup soft butter
12 oz. semi-sweet chocolate chips

Steps:
Preheat oven to 375 degrees
Combine flour, salt, baking soda, in bowl. Set mixture aside.
Combine sugars, butter, vanilla and beat until creamy.
Add eggs and beat.
Add dry mixture and mix well.
Stir in chocolate chips.
Drop mixture by teaspoons onto un-greased cookie sheet.
Bake 8 to 10 minutes.

COP 3502: Computer Science I (Day 2) Page 4 Mark Llewellyn

• What is wrong with the following algorithm? (From
the back of a shampoo bottle.)

– Directions: Wet hair. Apply a small amount of shampoo,
lather, rinse, repeat.

Bad Algorithms

Answer: It never ends!

COP 3502: Computer Science I (Day 2) Page 5 Mark Llewellyn

• In the realm of computer algorithms, an
algorithm is useful only if:

– The algorithm accepts input data (not all
do, however).

– The algorithm processes that data in some
fashion.

– The algorithm produces some output (the
results).

Computer Algorithms

COP 3502: Computer Science I (Day 2) Page 6 Mark Llewellyn

• However, to be a correct algorithm, it must
correctly solve the problem for any valid input
data.

– Also, for the same input data, it must always give
the same answer.

– Invalid input data should produce an error
message or some other indication that the
algorithm cannot correctly solve the problem. It
should not produce an answer when given
incorrect data since the user will think that the
answer is valid.

Computer Algorithms (cont.)

COP 3502: Computer Science I (Day 2) Page 7 Mark Llewellyn

• Successful algorithms must consider all
possible cases presented by acceptable data.
You will succeed more quickly at constructing
algorithms if you make it a habit to:

– Think about the problem and its data.

– Enumerate all the special cases that the
algorithm must handle.

Computer Algorithms (cont.)

COP 3502: Computer Science I (Day 2) Page 8 Mark Llewellyn

• In specifying behavior, an algorithm must be:

– Precise

– Unambiguous

– Complete

– Correct

• There are various techniques that can be
used to describe algorithms:

– Natural language (English)

– Pictures (flow-charts)

– Pseudocode or a specific programming language

Describing Algorithms

COP 3502: Computer Science I (Day 2) Page 9 Mark Llewellyn

• Consider an algorithm for registering for classes.
1. Make a list of courses you want to register for, in order of priority.

2. Start with an empty schedule. Number of hours = 0.

3. Choose highest priority class on list.

4. If the chosen class is not full and its class time does not conflict with any
class already in the schedule, then register for the class:

4a. Add the class to the schedule.

4b. Add the class hours to the number of hours scheduled.

5. Cross that class off your list.

6. Repeat steps 3 through 5 until the number of hours scheduled is >= 15, or
until all classes have been crossed out.

7. Stop.

A Natural Language Algorithm

COP 3502: Computer Science I (Day 2) Page 10 Mark Llewellyn

Flowchart Representation
Begin Make list of classes you want to take

Num_Hours = 0

Choose highest priority class on list

Is this class full?

Is there a time
conflict?

Add class to class schedule
Add class hours to Num_Hours

More classes?

Num_Hours
>= 15

Cross class off list

END

no

no no no

yes

yes

yes

yes

COP 3502: Computer Science I (Day 2) Page 11 Mark Llewellyn

1. Precision
– Each step must be clear and unambiguous in its meaning.
– The order of execution of the steps must be clear.
– The number of steps must be finite. Each step must be finite.

2. Simplicity
– Each step must be simple enough that it can be easily

understood.
– Each step should translate into only a few (or one) computer

operation(s) or instruction (s).

3. Levels of Abstraction
– The steps in the algorithm should be grouped into related

modules or blocks.
– Modules may be nested (one inside another).
– Other algorithms may be referred to by name rather than

including all of their steps in another algorithm.

Properties of Good Algorithms

COP 3502: Computer Science I (Day 2) Page 12 Mark Llewellyn

• Abstraction refers to the logical grouping of
concepts or objects. This allows you to define and
implement in general terms without requiring or
specifying the details.

• Well-defined algorithms are organized in terms of
abstraction. This means that we can refer to each
of the major logical steps without being distracted
by the details that make up each one.

• The simple instructions that make up each logical
step are hidden inside modules. These modules
allow us to function at a higher level, to hide the
details of each step inside a module, and then refer
to that module by name whenever we need to use
it.

Algorithms and Abstraction

COP 3502: Computer Science I (Day 2) Page 13 Mark Llewellyn

• Modularization allows us to:

– Build and test each module independently.

– Interchange equivalent modules.

– Reuse modules whenever/wherever required.

• By hiding the details inside appropriate
modules, we can understand the main ideas
without being distracted. This is a key goal
of using various levels of abstraction.

Algorithms and Abstraction (cont.)

COP 3502: Computer Science I (Day 2) Page 14 Mark Llewellyn

• Each module represents an abstraction. The name
of the module describes the idea that the module
implements. The instructions hidden within the
module specify how that abstraction is to
implemented.

• We can see what is being done (the idea) by
reading the descriptive name of the module without
having to pay attention to how it is being
implemented.

• If we want to understand how it is implemented,
then we can look inside the module to find out.

Algorithms and Abstraction (cont.)

COP 3502: Computer Science I (Day 2) Page 15 Mark Llewellyn

1. Understand the problem
• The problem must be completely understood in

order to determine what is required for its
solution.

• In the university/learning environment this
means that you need to read the problem
carefully!

2. Analysis
• Identify the problem inputs and outputs.

Software Lifecycle and Algorithm Development

COP 3502: Computer Science I (Day 2) Page 16 Mark Llewellyn

3. Design
– Develop a list of steps (algorithm) to solve the problem.

– Refine the steps of this algorithm. (divide and conquer).

– Verify that the algorithm solves the problem (correctness).

4. Implementation
– Implement the algorithm as a program (C in this course).

– Must know the specific language used for implementation.

– Convert steps of the algorithm into programming language
statements.

Software Lifecycle and Algorithm Development (cont.)

COP 3502: Computer Science I (Day 2) Page 17 Mark Llewellyn

5. Testing and Verification
– Test the complete program (modules

independently) and verify that it works as
expected.

– Use different test cases (not just one) including
critical test cases.

6. Maintenance
– Long term maintenance and support for the

algorithm and software.

Software Lifecycle and Algorithm Development (cont.)

COP 3502: Computer Science I (Day 2) Page 18 Mark Llewellyn

• Consider the following algorithm for drinking a
glass of water.

1. Enter the kitchen.

• 2. Get a glass.

• 3. Get the water from the refrigerator.

• 4. Fill the glass with water.

• 5. Drink it.

Algorithm Refinement

COP 3502: Computer Science I (Day 2) Page 19 Mark Llewellyn

• Refinement of step 1.
1.1 Walk to the kitchen door.
1.2 Open the door.
1.3 Walk into the kitchen.

• Refinement of step 3.

3.1 Open the refrigerator.

3.2 Get the water.

3.3 Close the refrigerator.

• Refinement of step 4.

4.1 While the glass is not full

4.1.1 Pour some water into the glass

Algorithm Refinement (cont.)

