
COP 3502: Computer Science I (Day 10) Page 1 © Mark Llewellyn

COP 3502: Computer Science I
Spring 2004

– Day 10 –
Searching and Sorting

School of Electrical Engineering and Computer Science
University of Central Florida

Instructor : Mark Llewellyn
markl@cs.ucf.edu
CC1 211, 823-2790
http://www.cs.ucf.edu/courses/cop3502/spr04

COP 3502: Computer Science I (Day 10) Page 2 © Mark Llewellyn

Searching
• Searching is a fundamental operation to which computers

are applies every day.

• As we saw when dealing with algorithm analysis and worst
case performance, searching a list of elements when the list
is unsorted requires us to examine, on the average, half of
the elements in the list to find the search element. The
worst case performance requires that we search all of the
elements in the list. The worst case can occur in two ways,
either the element we are searching for is in the last
position in the list or the search element is not in the list.

• Are all search techniques this bad?

– Answer: No, there a much faster search techniques and we will
examine some of these.

COP 3502: Computer Science I (Day 10) Page 3 © Mark Llewellyn

Sequential Search Algorithm

SequentialSearch (list, target, n)
// list the elements to be searched
// target the search element
// n the number of elements in the list

for (i = ; i <= n; i++){
if (target = list[i])

return success;
}
return failure;

end.

COP 3502: Computer Science I (Day 10) Page 4 © Mark Llewellyn

Sequential Search (cont.)

Suppose we have the following unsorted list:

45 39 8 54 77 38 24 16 4 7 9 20
If we are searching for: 45, we’ll look at 1 element before success

39, we’ll look at 2 elements before success
8, we’ll look at 3 elements before success
54, we’ll look at 4 elements before success
77, we’ll look at 5 elements before success
38 we’ll look at 6 elements before success
24, we’ll look at 7 elements before success
16, we’ll look at 8 elements before success
4, we’ll look at 9 elements before success
7, we’ll look at 10 elements before success
9, we’ll look at 11 elements before success
20, we’ll look at 12 elements before success

For any element not in the list, we’ll look at 12 elements before failure

COP 3502: Computer Science I (Day 10) Page 5 © Mark Llewellyn

Sequential Search (cont.)

• Assuming that we are searching for an element which
appears in the list, what is the average case performance of
this searching algorithm?
Average number of elements examined is:

• In general we have:

65.6
24

156
24

1312
2

1312
12
1

i
12
1 12

1i
===

×
=

×
×=∑

=

)n(O
2

1n
2

)1n(n
n
1

i
n
1 n

1i
=

+
=

+
×=∑

=

Total number
of possibilities

COP 3502: Computer Science I (Day 10) Page 6 © Mark Llewellyn

Sequential Search (cont.)

• How would our analysis change if we include the cases
where the target element is not in the list?

• We’ve already seen that when this case occurs it requires
checking all n elements in the list. So the average number
of elements examined would be:









+
+






 +

×
+

=





 ×

+
+










×

+
=












+










×

+ ∑∑
== 1n

n
2

)1n(n
1n

1
n

1n
1

i
1n

1
ni

1n
1 n

1i

n

1i

)n(O
2

2n
1n

1
1

2
n

1n
n

2
n

=
+

≈
+

−+=
+

+=

As n ? 8 this term
approaches 0.

Number of elements searched in
fail case, the n+1st possibility we’re
considering

Considering the possibility that the target is not
in the list only increases the average case by
½. Not significant as n becomes large.

COP 3502: Computer Science I (Day 10) Page 7 © Mark Llewellyn

Sequential Search - Example

Suppose that we sort this list before we search:

4 7 8 9 16 20 24 38 39 45 54 77
If we are searching for: 4, we’ll look at 1 element before success

7, we’ll look at 2 elements before success
8, we’ll look at 3 elements before success
9, we’ll look at 4 elements before success
16, we’ll look at 5 elements before success
20 we’ll look at 6 elements before success
24, we’ll look at 7 elements before success
38, we’ll look at 8 elements before success
39 we’ll look at 9 elements before success
45, we’ll look at 10 elements before success
54 we’ll look at 11 elements before success
77, we’ll look at 12 elements before success

Average number of elements examined is:

Exactly the same!
Sorting didn’t do anything for us!

65.6
24

156
24

1312
2

1312
12
1

i
12
1 12

1i
===

×
=

×
×=∑

=

COP 3502: Computer Science I (Day 10) Page 8 © Mark Llewellyn

Summary of Sequential Search Technique

• This is a brute-force technique.

• Does not require the list to be sorted, even if the
list is sorted the technique does not improve in the
best, average, or worst cases.

O(n)

O(n)

O(1)

look at all the elements (success & failure)

look at half the elements

need to look at only 1 element

worst case

average case

best case

Sequential Search

COP 3502: Computer Science I (Day 10) Page 9 © Mark Llewellyn

Recursive Binary Search Algorithm

// Preconditions: low and high have to be valid indexes into values, and
// values must be sorted in ascending order.
// Postconditions: returns true if and only if searchval is stored in the
// array values in between index low and index high, inclusive.
int binSearch(int *values, int low, int high, int searchval) {

int mid;
if (low <= high) {

mid = (low+high)/2;
// Search lower half of the array.
if (searchval < values[mid])
return binSearch(values, low, mid-1, searchval);

// Search the upper half of the array.
else if (searchval > values[mid])
return binSearch(values, mid+1, high, searchval);

// Found it!
else
return 1;

}
// Can't find a value if there's no place to search.

return 0;
}

COP 3502: Computer Science I (Day 10) Page 10 © Mark Llewellyn

Binary Search Technique

• This is an application of the divide and conquer strategy.
This is one of the reasons that a recursive solution is a
natural fit for this technique.

• The list (search space) must be sorted. The binary search is
not applicable to unsorted lists.

• Analysis of the binary search technique almost never takes
into account the fact that sorting the search space is not free
in terms of time. However, recall that our earlier
discussion of amortized cost applies in this case, since only
one sort is required no matter how many searches are
performed on the data. If only one search is to be
performed the cost of sorting/search is high, however, as
the number of searches increases the cost of the sort/search
decreases.

COP 3502: Computer Science I (Day 10) Page 11 © Mark Llewellyn

Binary Search Analysis

4 7 8 9 16 20 24 38 39 45 54 77
If we are searching for 4: (need 3 comparisons)

low = 1, high = 12, mid = 13/2 = 6, check 20
low = 1, high = 5, mid = 6/2 = 3, check 8
low = 1, high = 2, mid = 3/2 = 1, check 4, match

If we are searching for 7: (need 4 comparisons)
low = 1, high = 12, mid = 13/2 = 6, check 20
low = 1, high = 5, mid = 6/2 = 3, check 8
low = 1, high = 2, mid = 3/2 = 1, check 4
low = 2, high = 2, mid = 4/2 = 2, check 7, match

If we are searching for 8: (need 2 comparisons)
low = 1, high = 12, mid = 13/2 = 6, check 20
low = 1, high = 5, mid = 6/2 = 3, check 8, match

If we are searching for 9: (need 3 comparisons)
low = 1, high = 12, mid = 13/2 = 6, check 20
low = 1, high = 5, mid = 6/2 = 3, check 8
low = 1, high = 2, mid = 3/2 = 1, check 4, match

Suppose that we use the same sorted list as in the previous example:

COP 3502: Computer Science I (Day 10) Page 12 © Mark Llewellyn

Binary Search Analysis (cont.)

If we are searching for 16: (need 4 comparisons)
low = 1, high = 12, mid = 13/2 = 6, check 20
low = 1, high = 5, mid = 6/2 = 3, check 8
low = 4, high = 5, mid = 9/2 = 4, check 9
low = 5, high = 5, mid = 10/2 = 5, check 16, match

If we are searching for 20: (need 1 comparison)
low = 1, high = 12, mid = 13/2 = 6, check 20, match

If we are searching for 24: (need 4 comparisons)
low = 1, high = 12, mid = 13/2 = 6, check 20
low = 7, high = 12, mid = 19/2 = 9, check 39
low = 7, high = 10, mid = 17/2 = 8, check 38
low = 7, high = 7, mid = 14/2 = 7, check 24, match

If we are searching for 38: (need 3 comparisons)
low = 1, high = 12, mid = 13/2 = 6, check 20
low = 7, high = 12, mid = 19/2 = 9, check 39
low = 7, high = 10, mid = 17/2 = 8, check 38, match

COP 3502: Computer Science I (Day 10) Page 13 © Mark Llewellyn

Binary Search Analysis (cont.)
Suppose that we use the same sorted list as in the previous example:

4 7 8 9 16 20 24 38 39 45 54 77
If we are searching for 39: (need 2 comparisons)

low = 1, high = 12, mid = 13/2 = 6, check 20
low = 7, high = 12, mid = 19/2 = 9, check 39, match

If we are searching for 45: (need 4 comparisons)
low = 1, high = 12, mid = 13/2 = 6, check 20
low = 7, high = 12, mid = 19/2 = 9, check 39
low = 10, high = 12, mid = 22/2 = 11, check 54
low = 10, high = 10, mid = 20/2 = 10, check 45, match

If we are searching for 54: (need 3 comparisons)
low = 1, high = 12, mid = 13/2 = 6, check 20
low = 7, high = 12, mid = 19/2 = 9, check 39
low = 10, high = 12, mid = 22/2 = 11, check 54,match

If we are searching for 77: (need 4 comparisons)
low = 1, high = 12, mid = 13/2 = 6, check 20
low = 7, high = 12, mid = 19/2 = 9, check 39
low = 10, high = 12, mid = 22/2 = 11, check 54
low = 12, high = 12, mid = 24/2 = 12, check 77, match

COP 3502: Computer Science I (Day 10) Page 14 © Mark Llewellyn

Binary Search Analysis (cont.)
• Let’s rank the number of comparisons necessary by search element:

20 – required 1 comparison
8, 39 – required 2 comparisons
4, 9, 38, 54 – required 3 comparisons
7, 16, 24, 45, 77 – required 4 comparisons

20

8 39

4 38 54

7

9

2416 45 77

A decision tree showing
the elements checked
at each pass in the
binary search.

4 comparisons
needed to find 16

COP 3502: Computer Science I (Day 10) Page 15 © Mark Llewellyn

Binary Search Analysis (cont.)
• Notice that our decision tree is a binary search tree. Shown below is a

complete binary search tree of 4 levels indicating the list element
positions. Notice that the number of nodes in this tree is 15 which is
equal to 24 – 1. Notice too, that the number of levels in this tree is 4
which is equal to log2(15+1). Since one comparison is done on each
level, the most number of comparisons that would be done is:
log2(4+1).

8

4 12

2 10 14

3

6

97 11 151 5 13

COP 3502: Computer Science I (Day 10) Page 16 © Mark Llewellyn

Binary Search Analysis (cont.)
• In general, a complete binary search tree of k levels will contain total

number of nodes n = 2k – 1. Thus a search tree which is balanced will
require approximately k = log2(n+1) comparisons in the worst case.

8

4 12

2 10 14

3

6

97 11 151 5 13

COP 3502: Computer Science I (Day 10) Page 17 © Mark Llewellyn

Binary Search Analysis (cont.)
• For an average case analysis, like the sequential search, we have two

possible cases: (1) the target always appears in the list and (2) the target
may not be in the list.

First case – target is in the list.

• In the first case, the target may appear in one of n positions in the list.
If again, we assume that each of these positions is equally likely, the
each as a probability of 1/n.

• As was illustrated by the search trees on the two previous pages, a
search for the element which is in the root of the tree (level 1) requires
1 comparison. Searching for elements found on level 2 of the tree
requires 2 comparisons. Three comparisons are required to find a
target element on level 3 and so on. In general, i comparisons are
required to find an element on level i.

• As we also saw on the previous page, for a complete binary tree, there
are 2i-1 nodes on level i, and when n = 2k –1, there are k levels in the
tree.

COP 3502: Computer Science I (Day 10) Page 18 © Mark Llewellyn

Binary Search Analysis (cont.)
• This means that to determine the total number of comparisons that will

be required for every possible case (i.e., searching for n distinct
targets), we sum, for every level in the tree, the product of the number
of nodes on that level and the number of comparisons for that level.

• This will give an average case analysis of:

• This is equal to:

• The closed form of:

∑
=

− −==
k

1i

k1i 12nfor2i
n
1

naverage)(

∑
=

×=
k

1i

i2i
2
1

n
1

naverage)(

() 221k2i 1k
k

1i

i +−= +

=
∑

COP 3502: Computer Science I (Day 10) Page 19 © Mark Llewellyn

Binary Search Analysis (cont.)
• Continuing to solve this we have:

• Thus, average number of comparisons is: O(log2 n)

()[] ()[]121k
n
1

221k
2
1

n
1

naverage k1k +−=+−××= +)(

[] ()[] []
1

n
2k

n
n2k

n
122k

122k
n
1

naverage
kkkk

kk −=
−

=
−−

=+−=)(

1
n

kkn
1

n
1nk

naverage1n2and12nBecause kk −
+

=−
+

=+=−=
)(

)(,

giving0n
knAs ,, →∞→

12nfor11nnaverageor1knaverage k
2 −=−+≈−≈)(log)()(

COP 3502: Computer Science I (Day 10) Page 20 © Mark Llewellyn

Binary Search Analysis (cont.)
Second case – target might not be in the list.

• In the second case, the target may still appear in one of n positions in the
list, however, we now have to add in the probability that the target is not in
the list.

• In addition to the n possibilities that the target is in the list. there are n+1
possibilities that the target is not in the list.

• There are n+1 possibilities that the target is not in the list because the target
can be smaller than the element in location 1, larger than the element in
location 1 but smaller than the element in location 2, larger that the
element in location 2 but smaller than the element in location 3, and so on,
through the possibility that the target is larger than the element in location
n.

• In each of these cases, it takes k comparisons to learn that the target is not
in the list.

• This means that we now have a total of 2*n+1 possibilities to include in the
average number of comparisons calculation. This is shown on the next
page.

COP 3502: Computer Science I (Day 10) Page 21 © Mark Llewellyn

Binary Search Analysis (cont.)
• This will give an average case analysis of:

• Solving this we have:

• Thus, we have average number of comparisons is O(log2 n).

• If the list contains 220-1 elements, the first case would require about 19
comparisons while the second case would require about 19.5 comparisons.

() 12nfork1n2i
1n2

1
naverage k

k

1i

1i −=











++











+
= ∑

=

−)(

()[] () ()[] ()
() 1122

k112121k
1n2

k1n121k
naverage

k

kkk

+−

+−++−
=

+
+++−

=)(

()
1k

k1k

1k

k1k

1k

kkk

2

122k

12

122k

12

k2122k
naverage +

+

+

+

+
+−

≈
−

+−
=

−

+−
=)(

12nfor
2
1

1n
2
1

knaverage k
2 −=−+=−≈)(log)(

COP 3502: Computer Science I (Day 10) Page 22 © Mark Llewellyn

Summary of Binary Search Technique

• This is an application of the divide and conquer
strategy. In this case the halving principle is
utilized.

• Requires the list to be sorted.

O(log2 n)

O(log2 n)

O(1)

see search tree

see search tree

need to look at only 1 element

worst case

average case

best case

Binary Search

COP 3502: Computer Science I (Day 10) Page 23 © Mark Llewellyn

Sorting
• Our analysis of searching has proven that the binary search

has a significant time savings over a sequential or linear
search. For this reason, software designers will tend to keep
information sorted so that searches can be done using binary
or other non-sequential search methods to take advantage of
their inherent speed-up over linear methods.

• We’ll look at several classis sorting algorithms and perform an
analysis of the running time of each sorting technique.

• For now we’ll stick to comparison based sorting algorithms,
that is, sorting techniques which compare the relative values
of two elements based upon some ordering of the elements
being sorted. We’ll assume that the records of our list have a
key field on which the sorting operation is based.

COP 3502: Computer Science I (Day 10) Page 24 © Mark Llewellyn

Insertion Sort
• The basic idea of the insertion sort is that if you have a list that

is sorted and need to add a new element, the most efficient
process is to put that new element into the correct position
instead of adding it anywhere and then resorting the entire list.

• Insertion sort accomplishes its task by considering that the
first element of any list is always a sorted list of size 1. A
two-element sorted list is created by correctly inserting the
second element of the list into the one-element list containing
the first element. The third element is then inserted into the
two element list. This process is repeated until all of the
elements have been put into the expanding sorted portion of
the list.

• The algorithm for an insertion sort is shown on the next page.

COP 3502: Computer Science I (Day 10) Page 25 © Mark Llewellyn

Insertion Sort Algorithm

insertionSort (list, n)
// list: the elements to be sorted
// n: the number of elements in the list

for i = 2 to n do
newelement = list[i];
location = i – 1;
while (location >= 1) and (list[location] > newelement) do

//move any larger elements out of the way
list[location + 1] = list[location];
location = location – 1;

end while
list[location + 1] = newelement;

end for

COP 3502: Computer Science I (Day 10) Page 26 © Mark Llewellyn

Insertion Sort Example

7654321
3765421
3476521
3457621
3451762
3451276
3451267
3451267

initial
unsorted
list

Sorted part of the list is shaded.

COP 3502: Computer Science I (Day 10) Page 27 © Mark Llewellyn

Worst Case Analysis for Insertion Sort
• Look at the inner while loop of the algorithm. The most work

this loop will do is when the new element to be added is
smaller than all of the elements already in the sorted part of
the list. In this situation, the loop will stop when the location
becomes 0.

• So, the most work the entire algorithm will do is in the case
where every new element is added to the front of the list. For
this case to occur, the list must be in decreasing order when
the algorithm begins.

• The next page illustrates this worst-case scenario.

COP 3502: Computer Science I (Day 10) Page 28 © Mark Llewellyn

Insertion Sort Worst Case Example

7654321
1765432
1276543
1237654
1234765
1234576
1234567
1234567

Sorted part of the list is shaded.

0 compares

1 compare

2 compares

3 compares

4 compares

5 compares

6 compares

COP 3502: Computer Science I (Day 10) Page 29 © Mark Llewellyn

Worst Case Analysis for Insertion Sort (cont.)

• In general, the ith element inserted will be compared to the i
previous elements.

• This means that the worst case complexity for insertion sort is
given by:

()2
21n

1i
nO

2
nn

2
n1n

inworst =
−

=
−

== ∑
−

=

)(
)(

COP 3502: Computer Science I (Day 10) Page 30 © Mark Llewellyn

Average Case Analysis for Insertion Sort
• Average case analysis is a two-step process. First, we need to

determine the average number of comparisons needed to move
one element into place. Then, as a second step, we can
determine the overall average number of operations by using
the first step result for all of the other elements.

• First, determine on average how many comparisons it takes to
move the ith element into position.

• We’ve already noted that adding the ith element to the sorted
part of the list requires at most i comparisons. Obviously, one
comparison is required even if the element remains in its
current position.

• How many different positions is it possible to move the ith

element into?

COP 3502: Computer Science I (Day 10) Page 31 © Mark Llewellyn

Average Case Analysis for Insertion Sort (cont.)

• Let’s look at small cases to see if we can identify a pattern that
we can generalize.

• There are two possibilities for the first element to be added,
either location 1 or location 2. There are three possible
locations for the second element to be added – either location
1, 2, or 3.

• Thus, there are i+1 locations for the ith element. We’ll assume
equal probability for all of these locations.

• Now for the second part of the analysis. How many
comparisons does it take to get to each of these i+1 possible
locations?

COP 3502: Computer Science I (Day 10) Page 32 © Mark Llewellyn

Average Case Analysis for Insertion Sort (cont.)

• Again, let’s consider small cases to see if we can identify a pattern
that we can generalize.

• If we are adding the fourth element, and it goes into location 5, the
first comparison would fail. If it goes into location 4, the first
comparison would succeed, but the second will fail. If it goes into
location 3, the first two comparisons would succeed, but the third
will fail. If it goes into location 2, the first three comparisons
succeed and the fourth fails. If it goes into location 1, the first four
comparisons succeed and there will be no further comparisons
because the location will have become zero.

• This implies that the ith element will require 1, 2, 3, …, i
comparisons for locations i+1, i, i-1, …, 2, and will require i
comparisons for location 1.

COP 3502: Computer Science I (Day 10) Page 33 © Mark Llewellyn

Average Case Analysis for Insertion Sort (cont.)

• Now we can express the average number of comparisons to
insert the ith element as:

• This is the average amount of work to insert the ith element.
This now must be summed for each of the 1 through n-1
elements that get added to the list. This total average
calculated on the next page is given by:












+















+
= ∑

=
ip

1i
1

elementiaverage
i

1p

th)(

()
1i

1
1

2
i

1i
i

2
i

i
2

1ii
1i

1
elementiaverage th

+
−+=

+
+=








+






 +

+
=)(

()()∑
=

=
n

1i

thelementiaveragenaverage)(

COP 3502: Computer Science I (Day 10) Page 34 © Mark Llewellyn

Average Case Analysis for Insertion Sort (cont.)

()() ∑∑
−

=

−

=








+
−+==

1n

1i

1n

1i

th

1i
1

1
2
i

elementiaveragenaverage)(

∑ ∑ ∑∑
−

=

−

=

−

=

−

= +
−+=








+
−+

1n

1i

1n

1i

1n

1i

1n

1i 1i
1

1
2
i

1i
1

1
2
i ∑ ∑ ∑

−

= = =
−










==

+

1n

1i

n

2i

n

1i
1

i
1

i
1

1i
1

Note :

() () ()1n1n
2

n1n
2
1

naverageThus −−−+





 −≈ ln)(,

() () () ()2
222

nO
4

n
1n

4
4n3n

1n1n
4

nn
naverage =≈−−−+≈−−−+−≈ lnln)(

COP 3502: Computer Science I (Day 10) Page 35 © Mark Llewellyn

Summary of Insertion Sort

• This is a simple comparison-based sorting
technique.

• Like playing cards as you sort the cards the dealer
hands to you.

O(n2)

O(n2)

O(n)

worst case

average case

best case

Insertion Sort

