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Searching
• Searching is a fundamental operation to which computers 

are applies every day.

• As we saw when dealing with algorithm analysis and worst 
case performance, searching a list of elements when the list 
is unsorted requires us to examine, on the average, half of 
the elements in the list to find the search element.  The 
worst case performance requires that we search all of the 
elements in the list.  The worst case can occur in two ways, 
either the element we are searching for is in the last 
position in the list or the search element is not in the list.

• Are all search techniques this bad?

– Answer:  No, there a much faster search techniques and we will 
examine some of these.
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Sequential Search Algorithm

SequentialSearch (list, target, n)
// list        the elements to be searched
// target   the search element
// n          the number of elements in the list

for (i = ; i <= n; i++){
if (target = list[i]) 

return success;
}
return failure;

end.
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Sequential Search (cont.)

Suppose we have the following unsorted list:

45   39   8   54   77   38     24    16     4    7     9    20
If we are searching for: 45, we’ll look at 1 element before success

39, we’ll look at 2 elements before success
8, we’ll look at 3 elements before success
54, we’ll look at 4 elements before success
77, we’ll look at 5 elements before success
38 we’ll look at 6 elements before success
24, we’ll look at 7 elements before success
16, we’ll look at 8 elements before success
4, we’ll look at 9 elements before success
7, we’ll look at 10 elements before success
9, we’ll look at 11 elements before success
20, we’ll look at 12 elements before success

For any element not in the list, we’ll look at 12 elements before failure
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Sequential Search (cont.)

• Assuming that we are searching for an element which 
appears in the list, what is the average case performance of 
this searching algorithm?
Average number of elements examined is:

• In general we have:
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Sequential Search (cont.)

• How would our analysis change if we include the cases 
where the target element is not in the list?

• We’ve already seen that when this case occurs it requires 
checking all n elements in the list. So the average number 
of elements examined would be:
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Considering the possibility that the target is not 
in the list only increases the average case by 
½.  Not significant as n becomes large.
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Sequential Search - Example

Suppose that we sort this list before we search:

4     7     8     9    16    20    24    38     39    45     54 77
If we are searching for: 4, we’ll look at 1 element before success

7, we’ll look at 2 elements before success
8, we’ll look at 3 elements before success
9, we’ll look at 4 elements before success
16, we’ll look at 5 elements before success
20 we’ll look at 6 elements before success
24, we’ll look at 7 elements before success
38, we’ll look at 8 elements before success
39 we’ll look at 9 elements before success
45, we’ll look at 10 elements before success
54 we’ll look at 11 elements before success
77, we’ll look at 12 elements before success

Average number of elements examined is:

Exactly the same!
Sorting didn’t do anything for us! 
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Summary of Sequential Search Technique

• This is a brute-force technique.

• Does not require the list to be sorted, even if the 
list is sorted the technique does not improve in the 
best, average, or worst cases.

O(n)

O(n)

O(1)

look at all the elements (success & failure)

look at half the elements

need to look at only 1 element

worst case

average case

best case

Sequential Search
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Recursive Binary Search Algorithm

// Preconditions: low and high have to be valid indexes into values, and
//                values must be sorted in ascending order.
// Postconditions: returns true if and only if searchval is stored in the
//                 array values in between index low and index high, inclusive.
int binSearch(int *values, int low, int high, int searchval) {

int mid;
if (low <= high) {

mid = (low+high)/2;
// Search lower half of the array.
if (searchval < values[mid]) 
return binSearch(values, low, mid-1, searchval);

// Search the upper half of the array.
else if (searchval > values[mid])
return binSearch(values, mid+1, high, searchval);

// Found it!
else
return 1;

}
// Can't find a value if there's no place to search.

return 0;
} 
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Binary Search Technique

• This is an application of the divide and conquer strategy.  
This is one of the reasons that a recursive solution is a 
natural fit for this technique.

• The list (search space) must be sorted.  The binary search is 
not applicable to unsorted lists.

• Analysis of the binary search technique almost never takes 
into account the fact that sorting the search space is not free 
in terms of time.  However, recall that our earlier 
discussion of amortized cost applies in this case, since only 
one sort is required no matter how many searches are 
performed on the data.  If only one search is to be 
performed the cost of sorting/search is high, however, as 
the number of searches increases the cost of the sort/search 
decreases.  
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Binary Search Analysis

4     7     8     9    16    20    24    38     39    45     54 77
If we are searching for 4:  (need 3 comparisons)

low = 1, high = 12, mid = 13/2 = 6, check 20
low = 1, high = 5, mid = 6/2 = 3, check 8
low = 1, high = 2, mid = 3/2 = 1, check 4, match

If we are searching for 7:  (need 4 comparisons)
low = 1, high = 12, mid = 13/2 = 6, check 20
low = 1, high = 5, mid = 6/2 = 3, check 8
low = 1, high = 2, mid = 3/2 = 1, check 4
low = 2, high = 2, mid = 4/2 = 2, check 7, match 

If we are searching for 8:  (need 2 comparisons)
low = 1, high = 12, mid = 13/2 = 6, check 20
low = 1, high = 5, mid = 6/2 = 3, check 8, match

If we are searching for 9:  (need 3 comparisons)
low = 1, high = 12, mid = 13/2 = 6, check 20
low = 1, high = 5, mid = 6/2 = 3, check 8
low = 1, high = 2, mid = 3/2 = 1, check 4, match

Suppose that we use the same sorted list as in the previous example:
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Binary Search Analysis (cont.)

If we are searching for 16:  (need 4 comparisons)
low = 1, high = 12, mid = 13/2 = 6, check 20
low = 1, high = 5, mid = 6/2 = 3, check 8
low = 4, high = 5, mid = 9/2 = 4, check 9
low = 5, high = 5, mid = 10/2 = 5, check 16, match

If we are searching for 20:  (need 1 comparison)
low = 1, high = 12, mid = 13/2 = 6, check 20, match

If we are searching for 24:  (need 4 comparisons)
low = 1, high = 12, mid = 13/2 = 6, check 20
low = 7, high = 12, mid = 19/2 = 9, check 39
low = 7, high = 10, mid = 17/2 = 8, check 38
low = 7, high = 7, mid = 14/2 = 7, check 24, match

If we are searching for 38:  (need 3 comparisons)
low = 1, high = 12, mid = 13/2 = 6, check 20
low = 7, high = 12, mid = 19/2 = 9, check 39
low = 7, high = 10, mid = 17/2 = 8, check 38, match
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Binary Search Analysis (cont.)
Suppose that we use the same sorted list as in the previous example:

4     7     8     9    16    20    24    38     39    45     54 77
If we are searching for 39:  (need 2 comparisons)

low = 1, high = 12, mid = 13/2 = 6, check 20
low = 7, high = 12, mid = 19/2 = 9, check 39, match

If we are searching for 45:  (need 4 comparisons)
low = 1, high = 12, mid = 13/2 = 6, check 20
low = 7, high = 12, mid = 19/2 = 9, check 39
low = 10, high = 12, mid = 22/2 = 11, check 54
low = 10, high = 10, mid = 20/2 = 10, check 45, match

If we are searching for 54:  (need 3 comparisons)
low = 1, high = 12, mid = 13/2 = 6, check 20
low = 7, high = 12, mid = 19/2 = 9, check 39
low = 10, high = 12, mid = 22/2 = 11, check 54,match

If we are searching for 77:  (need 4 comparisons)
low = 1, high = 12, mid = 13/2 = 6, check 20
low = 7, high = 12, mid = 19/2 = 9, check 39
low = 10, high = 12, mid = 22/2 = 11, check 54
low = 12, high = 12, mid = 24/2 = 12, check 77, match
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Binary Search Analysis (cont.)
• Let’s rank the number of comparisons necessary by search element:

20 – required 1 comparison
8, 39 – required 2 comparisons
4, 9, 38, 54 – required 3 comparisons
7, 16, 24, 45, 77 – required 4 comparisons

20

8 39

4 38 54

7

9

2416 45 77

A decision tree showing 
the elements checked
at each pass in the 
binary search.

4 comparisons 
needed to find 16
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Binary Search Analysis (cont.)
• Notice that our decision tree is a binary search tree.  Shown below is a 

complete binary search tree of 4 levels indicating the list element 
positions.  Notice that the number of nodes in this tree is 15 which is 
equal to 24 – 1.  Notice too, that the number of levels in this tree is 4  
which is equal to log2(15+1).  Since one comparison is done on each 
level, the most number of comparisons that would be done is: 
log2(4+1).
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Binary Search Analysis (cont.)
• In general, a complete binary search tree of k levels will contain total 

number of nodes n = 2k – 1.  Thus a search tree which is balanced will 
require approximately k = log2(n+1) comparisons in the worst case.
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Binary Search Analysis (cont.)
• For an average case analysis, like the sequential search, we have two 

possible cases: (1) the target always appears in the list and (2) the target 
may not be in the list. 

First case – target is in the list.

• In the first case, the target may appear in one of n positions in the list.  
If again, we assume that each of these positions is equally likely, the 
each as a probability of 1/n.

• As was illustrated by the search trees on the two previous pages, a 
search for the element which is in the root of the tree (level 1) requires 
1 comparison.  Searching for elements found on level 2 of the tree 
requires 2 comparisons.  Three comparisons are required to find a 
target element on level 3 and so on. In general, i comparisons are 
required to find an element on level i.

• As we also saw on the previous page, for a complete binary tree, there 
are 2i-1 nodes on level i, and when n = 2k –1, there are k levels in the 
tree.
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Binary Search Analysis (cont.)
• This means that to determine the total number of comparisons that will 

be required for every possible case (i.e., searching for n distinct 
targets), we sum, for every level in the tree, the product of the number 
of nodes on that level and the number of comparisons for that level.

• This will give an average case analysis of:

• This is equal to:
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Binary Search Analysis (cont.)
• Continuing to solve this we have: 

• Thus, average number of comparisons is: O(log2 n)
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Binary Search Analysis (cont.)
Second case – target might not be in the list.

• In the second case, the target may still appear in one of n positions in the 
list, however, we now have to add in the probability that the target is not in 
the list.  

• In addition to the n possibilities that the target is in the list. there are n+1 
possibilities that the target is not in the list.

• There are n+1 possibilities that the target is not in the list because the target 
can be smaller than the element in location 1, larger than the element in 
location 1 but smaller than the element in location 2, larger that the 
element in location 2 but smaller than the element in location 3, and so on, 
through the possibility that the target is larger than the element in location 
n.

• In each of these cases, it takes k comparisons to learn that the target is not 
in the list.

• This means that we now have a total of 2*n+1 possibilities to include in the 
average number of comparisons calculation.  This is shown on the next 
page.
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Binary Search Analysis (cont.)
• This will give an average case analysis of:

• Solving this we have:

• Thus, we have average number of comparisons is O(log2 n).

• If the list contains 220-1 elements, the first case would require about 19 
comparisons while the second case would require about 19.5 comparisons.
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Summary of Binary Search Technique

• This is an application of the divide and conquer 
strategy.  In this case the halving principle is 
utilized.

• Requires the list to be sorted.

O(log2 n)

O(log2 n)

O(1)

see search tree

see search tree

need to look at only 1 element

worst case

average case

best case

Binary Search
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Sorting
• Our analysis of searching has proven that the binary search 

has a significant time savings over a sequential or linear 
search.  For this reason, software designers will tend to keep 
information sorted so that searches can be done using binary 
or other non-sequential search methods to take advantage of 
their inherent speed-up over linear methods.

• We’ll look at several classis sorting algorithms and perform an 
analysis of the running time of each sorting technique.

• For now we’ll stick to comparison based sorting algorithms, 
that is, sorting techniques which compare the relative values 
of two elements based upon some ordering of the elements 
being sorted.  We’ll assume that the records of our list have a 
key field on which the sorting operation is based.
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Insertion Sort
• The basic idea of the insertion sort is that if you have a list that 

is sorted and need to add a new element, the most efficient 
process is to put that new element into the correct position 
instead of adding it anywhere and then resorting the entire list.

• Insertion sort accomplishes its task by considering that the 
first element of any list is always a sorted list of size 1.  A 
two-element sorted list is created by correctly inserting the 
second element of the list into the one-element list containing 
the first element.  The third element is then inserted into the 
two element list.  This process is repeated until all of the 
elements have been put into the expanding sorted portion of 
the list.

• The algorithm for an insertion sort is shown on the next page.
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Insertion Sort Algorithm

insertionSort (list, n)
// list:   the elements to be sorted
// n:      the number of elements in the list

for i = 2 to n do
newelement =   list[ i ];
location = i – 1;
while (location >= 1) and (list[location] > newelement) do

//move any larger elements out of the way
list[location + 1] = list[location];
location = location – 1;

end while
list[location + 1] = newelement;

end for
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Insertion Sort Example

7654321
3765421
3476521
3457621
3451762
3451276
3451267
3451267

initial 
unsorted 
list

Sorted part of the list is shaded.
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Worst Case Analysis for Insertion Sort
• Look at the inner while loop of the algorithm.  The most work 

this loop will do is when the new element to be added is 
smaller than all of the elements already in the sorted part of 
the list.  In this situation, the loop will stop when the location 
becomes 0.

• So, the most work the entire algorithm will do is in the case 
where every new element is added to the front of the list.  For 
this case to occur, the list must be in decreasing order when 
the algorithm begins.

• The next page illustrates this worst-case scenario.



COP 3502: Computer Science I  (Day 10)              Page 28 © Mark Llewellyn

Insertion Sort Worst Case Example

7654321
1765432
1276543
1237654
1234765
1234576
1234567
1234567

Sorted part of the list is shaded.

0 compares

1 compare

2 compares

3 compares

4 compares

5 compares

6 compares
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Worst Case Analysis for Insertion Sort (cont.)

• In general, the ith element inserted will be compared to the i
previous elements.  

• This means that the worst case complexity for insertion sort is 
given by:
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Average Case Analysis for Insertion Sort
• Average case analysis is a two-step process.  First, we need to 

determine the average number of comparisons needed to move 
one element into place. Then, as a second step, we can 
determine the overall average number of operations by using 
the first step result for all of the other elements.

• First, determine on average how many comparisons it takes to 
move the ith element into position.

• We’ve already noted that adding the ith element to the sorted 
part of the list requires at most i comparisons.  Obviously, one 
comparison is required even if the element remains in its 
current position.

• How many different positions is it possible to move the ith

element into?
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Average Case Analysis for Insertion Sort (cont.)

• Let’s look at small cases to see if we can identify a pattern that 
we can generalize.

• There are two possibilities for the first element to be added, 
either location 1 or location 2.   There are three possible 
locations for the second element to be added – either location 
1, 2, or 3. 

• Thus, there are i+1 locations for the ith element.  We’ll assume 
equal probability for all of these locations.

• Now for the second part of the analysis.  How many 
comparisons does it take to get to each of these i+1 possible 
locations?
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Average Case Analysis for Insertion Sort (cont.)

• Again, let’s consider small cases to see if we can identify a pattern 
that we can generalize.

• If we are adding the fourth element, and it goes into location 5, the 
first comparison would fail.  If it goes into location 4, the first 
comparison would succeed, but the second will fail.  If it goes into 
location 3, the first two comparisons would succeed, but the third 
will fail.  If it goes into location 2, the first three comparisons 
succeed and the fourth fails.  If it goes into location 1, the first four 
comparisons succeed and there will be no further comparisons 
because the location will have become zero.

• This implies that the ith element will require 1, 2, 3, …, i
comparisons for locations i+1, i, i-1, …, 2, and will require i
comparisons for location 1.
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Average Case Analysis for Insertion Sort (cont.)

• Now we can express the average number of comparisons to 
insert the ith element as:

• This is the average amount of work to insert the ith element.  
This now must be summed for each of the 1 through n-1 
elements that get added to the list.  This total average 
calculated on the next page is given by:
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Average Case Analysis for Insertion Sort (cont.)
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Summary of Insertion Sort

• This is a simple comparison-based sorting 
technique. 

• Like playing cards as you sort the cards the dealer 
hands to you.

O(n2)

O(n2)

O(n)

worst case

average case

best case

Insertion Sort


