Merge Sort
Uses divide-and —conquer methodol ogy.

- Main idear Divide the array into roughly equd sized
arrays and sort them separately (it is much easier to sort
short lists than long ones). Then merge the two sorted
arrays in order to get one sorted array.

- Trace with:

|59 |27 80 35 13|75|

In C:

voi d MergeSort (int

{

int md;

List[],

if (start < end) {
md = (start+end)/2;

Mer geSort (Li st,
Mer geSort (List,

Mer ge(Li st,

start,

start,
m d+1,

int start,

m d+1,

md);
end) ;
end) ;

i nt end)

Merging Two Sorted Lists

[llustration of merging two sorted sublistsin onearray:

Listl List2

\ \
2731 59 [80 85 [13]17 35 60 75

1 f f
start mid+1 end
Local Array

| b b
Sorted Array

void Merge(int List[], int startl,int start?2,

{

int end2)

int hol d[maxN] ;
int index, length, countl, count2, total;

length = start2 — startl;

/* copy values in first half into |local array */
for (index = 0; index < length; index++)
hol d[index] = List[startl + index];

/* Counters keep track of the current el ements
* in each of the two sublists to nerge

*/

countl = O;
count2 = start 2,
total = startl;

/* Loop until all values in one of the sublists
* have been nerged into the sorted part.
*/
whil e(countl < |l ength && count2 <= end2){
if (hold[countl] < List[count2]){
List[total] = hold[countl1];
countl = countl + 1;

el se {
List[total] = List[count2];
count2 = count2 + 1,

total = total + 1;

}

while (countl < |ength)({
List[total] = hold[countl];
countl = countl + 1,
total = total + 1;

}

return;

void MergeSort(int List[], int start, int end)

{

}

ClassExercise

int md;
if (start < end) {
md = (start+end)/2;
MergeSort (List, start, nmid);
MergeSort (List, md+1l, end);
Merge(List, start, md+1l, end);
}

Suppose we are going to sort the following array of
numbers using mergesort algorithm.

60 [12 |9 [30 [64 [8 6 |

a) How many recursive calls to the MergeSort function
are made to sort this array? (Do not count the original
cal.)

b) How many calls to the Merge function are made in
total ?

Quick-Sort

. Like merge sort, Quicksort is aso based on the divide-
and-conquer paradigm.
. But it uses this technique in a somewhat opposite

manner, as al the hard work is done befor e the recursive
cals.

- It works by partitioning an array into two parts, then
sorting the parts independently, and findly combining
the sorted subsequences by a simple concatenation.

In particular, the quick-sort agorithm consists of the
following three steps:

1. Divide: Partition the list.

- To partition the ligt, we first choose some dement
from the list for which we hope about half the
elements will come before and haf after. Cal this
element the pivot .

- Then we partition the eements so that all those with
values less than the pivot come in ore sublist and all
those with greater values come in ancther.

2. Recur: Recursively sort the sublists separately.

3. Conquer: Put the sorted sublists together.

Example:
pivot

EN

Iesstha:159/ Nieater than 59

13| 75

IessthaV k‘jter than 27 Iesstha7V greater than 80
| 75

L]
/ just combine \ /

|13 |27 5

27|80|35|13|75|

Partitioning the List

Goal
B <p | p| >=p

! ! !
low pivot location high

In the middle of the loop:

p % | >=p |2

lastSmall i

At each iteration check the value in entry i:
- if vauein entry i >= p then just increment i.

- if valuein entry i < p then increment lastSmall and swap the
contents of entry lastSmall with entry i.

At the end of the loop:
p <p >=p

!

lastSmall
Swap pivot with entry lastSmall

| mplementation

/* 1If the array has one or fewer elenents

* do nothing. Otherwi se the array is processed
* by a partition function which puts L[pivotLoc]
* into position and rearranges the
* other elements such that recursive calls
* properly finish the sort

*/

void quickSort(int L[], int low int high)
{

i nt pivotLoc;

if (low < high){
pi votLoc = partition(L, low, high);
qui ckSort (L, |ow, pivotLoc — 1);
qui ckSort (L, pivotLoc + 1, high);

/*
* Center elenent is chosen as pivot
*

int partition(int L[], int low int high)
{

int pivot;
int i, lastSmall;

swap(L, I ow, (I ow+hi gh)/2);
pivot = L[l ow;

lastSmal | = | ow,
for (i = lowtl; i<=high; i++){
if (L[i] < pivot) {
lastSmall = lastSmall + 1;
swap(L, lastSmall, i);
}
}
swap(L, low, lastSmall);
pi votLoc = | ast Smal | ;
return pivotlLoc;
}
void swap(int L[], int i, int j)
{
int tenp;
temp = L[i];
L[i] = L[l
} L[j] = tenp;

10

