
 1

Merge Sort

• Uses divide-and –conquer methodology.

• Main idea: Divide the array into roughly equal sized

arrays and sort them separately (it is much easier to sort
short lists than long ones). Then merge the two sorted
arrays in order to get one sorted array.

• Trace with:

59 27 80 35 13 75

 2

In C:

void MergeSort(int List[], int start, int end)
{
 int mid;

 if (start < end) {
 mid = (start+end)/2;
 MergeSort(List, start, mid);
 MergeSort(List, mid+1, end);
 Merge(List, start, mid+1, end);
 }
}

 3

Merging Two Sorted Lists

Illustration of merging two sorted sublists in one array:

List1 List2

27 31 59 80 85 13 17 35 60 75

start mid+1 end

Local Array

Sorted Array

 4

void Merge(int List[], int start1,int start2,
 int end2)
{

int hold[maxN];
int index, length, count1, count2, total;

length = start2 – start1;

/* copy values in first half into local array */
for (index = 0; index < length; index++)

 hold[index] = List[start1 + index];

/* Counters keep track of the current elements
 * in each of the two sublists to merge
 */
count1 = 0;
count2 = start2;
total = start1;

/* Loop until all values in one of the sublists
 * have been merged into the sorted part.
 */
while(count1 < length && count2 <= end2){
 if (hold[count1] < List[count2]){
 List[total] = hold[count1];
 count1 = count1 + 1;
 }
 else {
 List[total] = List[count2];
 count2 = count2 + 1;
 }
 total = total + 1;
}
while (count1 < length){
 List[total] = hold[count1];
 count1 = count1 + 1;

 total = total + 1;
}

 return;
}

 5

Class Exercise

void MergeSort(int List[], int start, int end)
{ int mid;
 if (start < end) {
 mid = (start+end)/2;
 MergeSort(List, start, mid);
 MergeSort(List, mid+1, end);
 Merge(List, start, mid+1, end);
 }
}
Suppose we are going to sort the following array of
numbers using mergesort algorithm.

60 12 90 30 64 8 6

a) How many recursive calls to the MergeSort function
are made to sort this array? (Do not count the original
call.)

b) How many calls to the Merge function are made in
total?

 6

Quick-Sort

• Like merge sort, Quicksort is also based on the divide-
and-conquer paradigm.

• But it uses this technique in a somewhat opposite
manner, as all the hard work is done before the recursive
calls.

• It works by partitioning an array into two parts, then
sorting the parts independently, and finally combining
the sorted subsequences by a simple concatenation.

In particular, the quick-sort algorithm consists of the
following three steps:

1. Divide: Partition the list.

• To partition the list, we first choose some element
from the list for which we hope about half the
elements will come before and half after. Call this
element the pivot .

• Then we partition the elements so that all those with
values less than the pivot come in one sublist and all
those with greater values come in another.

2. Recur: Recursively sort the sublists separately.

3. Conquer: Put the sorted sublists together.

 7

Example:

59 27 80 35 13 75

27 35 13

80 75

13

35

75

13 27 35

75 80

13 27 35 59 75 80

less than 59 greater than 59

less than 27 less than 80 greater than 27 greater than 80

pivot

just combine

 8

Partitioning the List
Goal:

< p p >= p

low pivot location high

In the middle of the loop:

p <p >= p ?

 lastSmall i

At each iteration check the value in entry i:

• if value in entry i >= p then just increment i.

• if value in entry i < p then increment lastSmall and swap the
contents of entry lastSmall with entry i.

At the end of the loop:

p < p >= p

 lastSmall

Swap pivot with entry lastSmall

 9

Implementation

/* If the array has one or fewer elements
 * do nothing. Otherwise the array is processed
 * by a partition function which puts L[pivotLoc]
 * into position and rearranges the
 * other elements such that recursive calls
 * properly finish the sort
*/

void quickSort(int L[], int low, int high)
{
 int pivotLoc;

 if (low < high){
 pivotLoc = partition(L, low, high);
 quickSort(L, low, pivotLoc – 1);
 quickSort(L, pivotLoc + 1, high);
 }

}

 10

/*
 * Center element is chosen as pivot
 * /

int partition(int L[], int low, int high)
{
 int pivot;
 int i, lastSmall;

 swap(L,low,(low+high)/2);
 pivot = L[low];
 lastSmall = low;

 for (i = low+1; i<=high; i++){
 if (L[i] < pivot) {
 lastSmall = lastSmall + 1;
 swap(L, lastSmall, i);
 }
 }

 swap(L, low, lastSmall);
 pivotLoc = lastSmall;
 return pivotLoc;
}

void swap(int L[], int i, int j)
{
 int temp;
 temp = L[i];
 L[i] = L[j];
 L[j] = temp;
}

