Recursion

» Recursion is a function invoking itsdlf, either directly or
indirectly.

> |t can be used as an alternative to iteration.

» Recursion is an important and powerful tool in problem
solving and programming. It is a programming technique
tha naturaly implements the divide-and-conquer
problem solving methodology.

In its simplest form the idea of recursion is straightforward:

Example 1:

voi d count _down(i nt n)

{
if (n <=0
printf(“\nBlast off.\n");
el sef
printf(“o%d! “, n);
count _down(n-1);

}
int main ()

count _down(10);

Example 2: Multiplication of natural numbers.

a* b =aadded to itself b times. (iterative definition)

a*b=a if b=1
(recursive definition)
a*b=a* (bl +aifb>1

eg.
6*3=6*2+6=6*1+6+6=6+6+6=18

In C:

int multiply(int a, int b)
{
if (b ==1) /[* stopping case */
return a;
el se /* recursive step */
return (a + nultiply(a, b-1));

Example 3: Factorial Function
nNn=n*Mnl*Mn2)* ...*2*1

SI=5*4*3*2*1
=1

M athematical definition:

n'=1 ifn=0
n=n.(n-1).(Mn-2).2.1 ifn>0
Iteratively:
p =1
for (x=n; x>=1; Xx--)

p = p* X

Recursive definition:

4 =4* 3*2*1=4* 3!

nl=n* (n-1)!

Thus,
nl=1 ifn=0
n! = n*(n-1)! ifn>0
In C:
int factorial (int n)
{
if (n ==0)
return 1;
el se
return (n * factorial(n-1));
}

The Nature of Recursion

1)One or more simple cases of the problem (called
the stopping cases) have a simple non-recursive
solution.

2)The other cases of the problem can be reduced
(using recursion) to problems that are closer to
stopping cases.

3)Eventually the problem can be reduced to stopping
cases only, which arerelatively easy to solve.

In general:

if (stopping case)
solve it
else
reduce the problem using recursion

Tracing a Recursive Function

Computer uses a stack to keep track of function calls.
Whenever anew functioniscalled, all its parameters
and local variables are pushed onto the stack along
with the memory address d the calling statement
(this gives the computer the return point after
execution of the function)

Tracing the function multiply

x = multiply(6,3):

a=6

b=3

3<=1?fdse

return (6 + multiply(6,2))

A

A 4

a=6

b=2

2<=17fdse

return(6 + multiply(6,1))

A

A

a=¢€
b=1
1<=1?true
return(6)

Example: Tracing a Recursive Function

Palindrome is a string of characters that reads the
same backwards and forwards (e.g. level, deed, mom)

palindrome(5) reads 5 characters and prints them in
reverse order.

voi d palindrome(int n)

{
char next;
if (n==1) { /* stopping case */
scanf (" %", &next);
printf("%", next);
}
el se {
scanf (" %", &next);
pal i ndrone(n-1);
printf("%", next);
}
return;
}
int main()

printf("Enter a string: ");
pal i ndrone(5);
printf("\n");

Trace of palindrome: for input abc

palindrome(3);
A

—>

n=3

3<=1?fdse
read next : a
palindrome(2)

write a
return

A

n=2

—>

write b

2 <=1?fdse
read next : b
palindrome(1)

return

A

n=1
1<=1?true
read next : c
write c

return

Example 4: Fibonacci Sequence

It isthe sequence of integers:

h 4 L & 4 &t & tg b
0 1 1 2 3 5 8 13 21 34..

Each element in this sequence is the sum of the two
preceding elements.

The specification of the terms in the Fibonacci sequence:

n ifnisOorl(i.,e.n<2)
that tho otherwise

InC:

int fibonacci(int n)

{
if (n<2)
return n;
el se
return(fibonacci(n-2) + fibonacci(n-1));
}

Calling the function :

x = fibonacci (5);

Common Errors

» It may not terminate if the stopping case is not

correct or isincomplete (stack overflow: run-time
error)

» Make sure that each recursive step leads to a

situation that is closer to a stopping case.

Comparison of Iteration and Recursion

» In general, an iterative version of a program will

execute more efficiently in terms of time and space
than a recursive version. This is because the
overhead involved in entering and exiting a
function isavoided in iterative version.

» However arecursive solution can be sometimes the

most natural and logical way of solving a problem.
= Conflict: machine efficiency versus programmer
efficiency

> It isalwaystrue that recursion can be replaced with

iteration and a stack.

10

Problem Solving with Recursion
Towers of Hanoi Problem involves moving a

specified number of dsks (N) that are all different
sizes from one tower to another.

|

The goal is to move all disks from tower A to C

subject to the following rules:
1. Only one disk may be moved at atime and this

disk must be the top disk on atower.
2. A larger disk can never be placed on top of a
smaller disk.

The stopping cases of the problem involve moving
only one disk.

11

Towersof Hanoi: Solution

al State

L] LL]

B LA

L by |

12

Problem: Solve the Towers of Hanoi for N disks. InC:

Analysis Solution consists of a printed list of void tower(int n, char start, char finish, char tenp)
individual disk moves. We need recursion that can be { it o(n o= 1)
used to move any number of disks from one tower to orintf(“Nove from% to %\n", start, finish);

another, using the third tower as a temporary tower. el se {
tower(n-1, start, tenp, finish);
printf(“Mve from% to % \n”", start, finish);

Inputs: n: integer, tower (n-1, tenp, finish, start);

sart’A’, ‘B’, or ‘C, }
finish’A’, ‘B’, or ‘'C’ }
temp’A’,'B’,or‘'C
Test:
Output: alist of individual disk moves.
tower(3,'A,'C, 'B);

Algorithm

Output:
if (n==1) [* stopping case */ Move fromA to C
move a single disk fromstart to finish Move fromA to B
else Move fromCto B
. . .. Move from A to C
-Move n-1 disks from start to temp usingfinish Move fromB to A
- Move a single disk from start to finish Move fromA to C

- Move n-1 disks from temp to
finish using start as temporary tower

13 14

ClassExercises

1) Trace the following recursive function:
#i ncl ude <stdio. h>

int f(char *s)

{
if (*s == "'"\0")
return O;
el se
return (1 + f(s+1));
}
int main()
char a[20] = "Conputer Science |I";
printf("%l\n",f(a));
}

15

2) Trace the following recursive function:

#i ncl ude <st di o. h>
int f(int c)

if (!(c > 10)) {
printf("%\n", c);

f(c + 1);
}
}
int main()
f(0);
}

16

3) Trace the following recursive function:

#i ncl ude <stdio. h>
void f(int);
void g(int);

void f(int c)

{
printf("hello fromf()\n");

if (++c <= 3)
g(c);
}

void g(int c)

printf("hello fromg()\n");
f(c);
}

int main()
printf("hello from main\n");
f(1);
return O;

}

17

4) Write arecursive function to check if agivenitemisa
member of a set. Function prototype is:

/* Inputs: An integer array, the item
bei ng searched and the index of the
| ast elenment in the array.

Qutput: true (1) or false (0)

*/

int isMenber(int a[], int item int n);

18

5) Write arecursive function to check if the contents
of an array are in ascending order or not. The
function prototypeis:

/* Inputs: an integer array, the index
of the last element in the array.
Qut put: true or false.

*/

int isAscending(int a[], int n);

19

