
 1

QUEUES
• A queue is a list from which items may be deleted at one

end (front) and into which items may be inserted at the
other end (rear)

• Similar to checkout line in a grocery store - first come

first served.

• It is referred to as a first-in-first-out (FIFO) data
structure.

• Queues have many applications in computer systems:

− jobs in a single processor computer
− print spooling
− information packets in computer networks.

• Primitive operations
enqueue (q, x): inserts item x at the rear of the
queue q
x = dequeue (q): removes the front element from
q and returns its value.
isEmpty(q) : true if the queue is empty, otherwise
false.

front rear

 2

Example

enqueue(q, ‘A’);
enqueue(q, ‘B’);
enqueue(q, ‘C’);
x = dequeue(q);
enqueue(q, ‘D’);
enqueue(q, ‘E’);

x= dequeue (q) -> x= ‘A’

front rear

A B C

front rear

B C D E

 3

Linked List Implementation

We need to keep two pointers: front and rear

struct queueNode{
 char data;
 struct queueNode * next;
};

struct queue{
 struct queueNode *front;
 struct queueNode *rear;
};

front

A B C D

rear

 4

Inserting a node:

void enqueue(struct queue *q, char value)
{
 struct queueNode * newPtr;

 newPtr = malloc(sizeof(struct queueNode));
 if (newPtr != NULL) {
 newPtr->data = value;
 newPtr->next = NULL;
 if (isEmpty(*q))
 q->front = newPtr;
 else
 q->rear->next = newPtr;
 q->rear = newPtr;
 }
 else
 printf("%c is not inserted. No memory "
 "available.\n", value);
}

 5

char dequeue(struct queue *q)
{
 char value;
 struct queueNode * tempPtr;

 value = q->front->data;
 tempPtr = q->front;

 q->front = q->front->next;
 if (q->front == NULL)
 q->rear = NULL;
 free (tempPtr);
 return value;
}

int isEmpty(struct queue q)
{
 return q.front == NULL;
}

 6

Array Implementation

A huge array and two variables (indices) front and rear to
point the first and the last elements of the queue.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

5 3 8 11 9 4

struct queue{
 int items[MAX];
 int front;
 int rear;
};

struct queue q;

Initially:
 q.rear = -1;
 q.front = 0;
/* queue is empty when rear < front */

• Addition and deletion are simple.
• Good if the queue is often emptied.
• Disadvantage: needs a huge array.

Ignoring overflow and underflow, insert and remove can be
implemented as:

front rear

 7

/* number of elements in the queue = rear – front + 1 */

enqueue(q, x):
 q.rear = q.rear +1;
 q.items[q.rear] = x;

x = dequeue(q):
 x = q.items[q.front];
 q.front = q.front + 1;

Problems with this representation:

Although there is space we may not be able to add a new
item. An attempt will cause an overflow.

0 1 2 3 4
 C D E

It is possible to have an empty queue yet no new item can
be inserted.

rear front

 8

A Solution: Circular Array

− A good method to implement queues (efficient use of

space) is to view the array as if it is a circular array.

equivalently:

− when we pass the MAX-1, we return to 0.
− to increment index in a circular array:

if (i == MAX-1)
 i = 0;
else i = i+ 1;
(i.e. use % operator)

front

rear

1
0 MAX-1 MAX-2

front rear

 9

• The condition rear < front is no longer valid as a test for
empty queue.

• One solution: Keep a counter that holds the number of

elements in the queue.

struct queue{
 int count;
 int front;
 int rear;
 int items[max];
};

void function initialize (struct queue *q)
{
 q->count = 0;
 q->front = 0;
 q->rear = -1;
}

int isEmpty(struct queue q)
{
 return (q.count == 0);
}

int isFull(struct queue q)
{
 return (q.count == max);
}

 10

void enqueue(struct queue *q, int x)
{
 if (q-> count == max)
 printf(“%d is not inserted. Queue is ”

“full.\n”, x);
 else{
 q->count = q->count + 1;
 q->rear = (q->rear + 1) % max;
 q->items[rear] = x;
 }
}

int dequeue(struct queue *q)
{
 int x;

 q->count = q->count –1;
 x = q->items[front];
 q->front = (q->front + 1)% max;
 return x;
}

 11

Exercises

• Empty one stack onto the top of another stack.
• Move all items from a queue to a stack.
• Start with a queue and an empty stack and use the stack

to reverse the order of all items in the queue.
• How can you implement a queue of stacks?
• How can you implement a stack of queues?

