QUEUES
- A queueis alist from which items may be deleted at one
end (front) and into which items may be inserted at the
other end (rear)

. Similar to checkout line in a grocery store - first come
first served.

! !

front rear

- It is referred to as a first-in-first-out (FIFO) data
structure.

- Queues have many applications in computer systems:
- jobsin asingle processor computer

- print spooling

- information packets in computer networks.

. Primitive operations

enqueue (g, X): insertsitem x at the rear of the
queueq

x = dequeue (q): removes the front ement from
g and returns its value.

i sEnmpty(q) : true if the queue is empty, otherwise
fase.

Example

enqueue(q, ‘A);
enqueue(q, ‘B);
enqueue(q, ‘C);
X = dequeue(q);

enqueue(q, ‘D);
enqueue(q, ‘E);

~—| Al B|C

1 f

front rear

x= dequeue (q) -> x="A’

! f

front rear

Linked List Implementation
We need to keep two pointers: front and rear

front rear

struct queueNode{
char dat a;
struct queueNode * next;

s

struct queue{
struct queueNode *front;

struct queueNode *rear;

b

Inserting a node:

voi d enqueue(struct queue *q, char val ue)

struct queueNode * newPtr;

newPtr = mall oc(sizeof (struct queueNode));
if (newPtr != NULL) {
newPtr->data = val ue;
newPt r - >next = NULL;
if (isEmpty(*q))
g->front = newPtr;

el se
g- >rear - >next = newPtr;
gq->rear = newPtr;
el se

printf("% is not inserted. No nemory "
"avail abl e.\n", val ue);

char

{

dequeue(struct queue *q)

char val ue;
struct queueNode * tenpPtr

value = g->front->data
tempPtr = g->front;

g->front = g->front->next;

if (g->front == NULL)
gq->rear = NULL;

free (tempPtr);

return val ue;

i SEmpty(struct queue Q)

return g.front == NULL

A huge array and two variables (indices) front and rear to
point the first and the last el ements of the queue.

Array Implementation

1 2 6 7 8

9 10 11 12

13

14

0
S

N

3 4
318|119

|

front

st

s

st

_‘
@
Q
=

ruct queue{

int itens[MAX];

int front;
int rear;

ruct queue q;

Initialy:

g.rear = -1,
g.front = 0;

/* queue is enpty when rear

- Addition and deletion are Smple.

Ignoring overflow and underflow, insert and remove can be

Good if the queue is often emptied.
Disadvantage: needs a huge array.

implemented as:

< front

*/

/* number of elements in the queue = rear — front + 1 */

enqueue(q, X):
g.rear = (g.rear +1
g.itenms[qg.rear] = Xx;

x = dequeue(Qq):
X = q.items[q.front];
g.front = g.front + 1;

Problems with this representation:

Although there is space we may not be able to add a new
item. An attempt will cause an overflow.

| e o]e]
f f
front rear

It is possible to have an empty queue yet no new item can
be inserted.

A Solution: Circular Array

- A good method to implement queues (efficient use of

space) isto view the array asif it isa circular array.

0__MAX-1 \ o

rear

front

equivalently:

! 1

front rear

- when we pass the MAX-1, we return to 0.
- to increment index in acircular array:

if (i == MAX-1)

i =0;
else i =i+ 1;
(i.e. use % operator)

The condition rear < front is no longer valid as a test for void enqueue(struct queue *q, int X)

empty queue. -
if (g-> count == nBx)
. rintf(“% is not inserted. eue is”
One solution: Keep a counter that holds the number of P (“full.\n, x);: Q
elements in the queue. el se{
g- >count = ¢g->count + 1,
struct queue{ g->rear = (g->rear + 1) % nmax;
i nt count; g->items[rear] = Xx;
int front; }
int rear; }
int itens[max];
b
void function initialize (struct queue *q) int dequeue(struct queue *q)
{ {
g->count = O; int x;
g->front = 0;
g->rear = -1; g- >count = ¢->count -1;
} X = qg->tems[front];
g->front = (g->front + 1)% max;
return x;
int i sEnpty(struct queue Q) }
{
return (qg.count == 0);
}
int isFull(struct queue Q)
{
return (qg.count == max);
}

Exercises

Empty one stack onto the top of another stack.
Move dl items from a queue to a stack.

- Start with a queue and an empty stack and use the stack
to reverse the order of al itemsin the queue.

How can you implement a queue of stacks?
How can you implement a stack of queues?

11

