
 1

Programming Exercises

Counting the nodes in a List

• Recursive version:

int count (struct node * head)
{
 if (head==NULL)
 return 0;
 else
 return(1 + count(head->next));
}

• Iterative version:

int count(struct node *head)
{
 struct node * p;
 int c = 0;

 p = head;
 while (p != NULL){
 c = c + 1;
 p = p->next;
 }
 return c;
}

 2

Look up an item in the list pointed by head

/* Given the item and the pointer to the head of
the list, the function returns NULL if the item is
not found; or returns a pointer to the node which
matches the item
*/
struct node * lookup(int item, struct node *head)
{
 if (head == NULL)
 return NULL;
 else if (item == head->data)
 return head;
 else
 return(lookup(item, head->next));
}

 3

Creating a List

• Recursive version:

// Copies the contents of an array into a
// dynamically growing list.

struct node *array_to_list(int a[], int j, int n)
{

struct node *head;

if (j >= n) //base case
 return NULL;
 else {
 head = (struct node *)
 malloc(sizeof(struct node));
 head->data = a[j];
 head->next = array_to_list(a, j+1, n);
 return head;

}
}

Calling the function:

int numbers[] = {1, 2, 3, 4};
struct node *my_list;

my_list = array_to_list(numbers, 0, 4);

 4

• Iterative version:

struct node *array_to_list(int a[], int n)
{
 struct node *head, *current;
 int j;

 if (n == 0) //the array is empty

return NULL;

else { //create the head node for
 //the first element

 head = (struct node *)
 malloc(sizeof(struct node));
 current = head;
 current->data = a[0];

//create nodes for the other elements

 j = 1;
 while (j < n){
 current->next = (struct node *)

 malloc(sizeof(struct node));
 current = current->next;
 current->data = a[j];
 j = j +1;
 }
 current->next = NULL; //finish the list

 return head;
}

}
Calling the function:

my_list = array_to_list(numbers, 4);

 5

Freeing Memory

The following function frees the memory of an entire list once we
don't need to use that list.

void delete_list(struct node *p) {

 if (p !=NULL) {
 delete_list(p->next);
 free(p);
 }
}

 6

Insertion before a node

Problem: Insert the node pointed by newnode before the
node pointed by target. This is not so easy. We need to
find the previous node so that we can update its pointer.

head target

newnode

 7

Inserting a new node before a given node:

void insert_before(struct node **head,
 struct node *target,
 struct node *newnode)
{
 struct node *p, *prep;

 // search target pointer and keep track of the
 // previous pointer

 p = *head;

 while (p != NULL && p != target){
 prep = p;
 p = p->next;

}

//insert it
newnode->next = p;
if (*head == p)
 *head = newnode;
else
 prep ->next = newnode;

}

Attention:
this is a pointer to
pointer

we have to use the
dereferencing
operator

 8

Deletion of a node from the list

Problem: Delete the node pointed by target.
Since we don’t have a pointer to the previous node, we
have to search the list to find it first:

//delete the target node. If the target
//node is not in the list do nothing.

void delete (struct node **head,
 struct node *target)
{

struct node *p,*prep;

//find previous node
 p = *head;
 while (p != NULL && p != target){
 prep = p;
 p = p->next;
 }

 //delete the target
 if (p != NULL){ //target is in the list
 if (p == *head) //deleting the first node
 *head = p->next;
 else
 prep ->next = p->next;
 free(p);
 }
}

head target

 9

Dynamic Arrays

We can also dynamically allocate space for an array. We can do
this through pointers.

int main() {

 int *x, size;

 printf("Enter the size of your array.\n");
 scanf("%d", &size);

 if (size > 0)
 x = (int *)malloc(size * sizeof(int));

 for (i = 0; i < size; i++) {
 printf("Enter the next array value.\n");
 scanf("%d", &x[i]);
 }
}

 10

Class Exercise

1) Write a function that will split a linked list into

two lists L1 and L2 such that, successive nodes go
to different lists. (The first, third and all the other
odd numbered nodes go to the first list, the second,
fourth and all the other even numbered nodes go to
the second list).

2) Write a function that will reverse the pointers of
a linked list while traversing it only once.

